期刊文献+

一种基于时间窗口的数据预处理算法 被引量:1

Time-windows Based Algorithm for Data Preprocessing
下载PDF
导出
摘要 提出了一个基于时间窗口的数据预处理算法 .面向具体应用 ,根据已有知识 ,此算法可以智能化地滤去一些“噪声”数据 .与一般的定义不同 ,本文所谓的“噪声”数据是指那些由一些已知的规则决定性地影响着的数据 ,研究显示它们会对进一步的数据挖掘形成极大干扰 .实际测试结果表明 ,本算法能够改善一些已有数据挖掘算法的执行效果 . A time-windows based data preprocessing algorithm is proposed. Application oriented, this algorithm can intelligently filter out 'noisy' data, which is decided by the rules currently known and may prevent us from mining new rules from the database. Using Apriori algorithm to process the data that has been preprocessed by the algorithm, the authors get frequent itemset closer to their target. Furthermore, using TW _SP, a multi-dimensional sequential pattern mining algorithm proposed by other researchers in 2001, to process the preprocessed data, the authors get sequential patterns which proved to be clearer.
出处 《小型微型计算机系统》 CSCD 北大核心 2004年第1期89-92,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金 (6983 5 0 0 )资助
关键词 数据预处理 数据挖掘 序贯模式 data preprocessing data mining sequential patterns
  • 相关文献

参考文献2

二级参考文献4

  • 1Agrawal R,Srikant R.Mining sequential patterns[].Proceedings of the th International Conference on Data Engineering (ICDE’).1995
  • 2SRIKANT R,AGRAWAL R.Mining sequential patterns:generalizations and performance improvements[].In: Proc international Conference on Extending Database TechnologyAvignon France.1996
  • 3Cheung D W,,Han J,Ng V T,et al.Maintenance of discoveredassociation rules in large databases:an incremental updatingtechnique[C]//[].Proc of the th Int Conf on Data Engi-neering.1996
  • 4Mannila,H.et al.Discovery of Frequent Episodes in Event Sequences[].proceeding of Data Mining and Knowledge Discovery.1997

共引文献3

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部