摘要
在减弱对非线性刚性变延迟微分方程初值问题本身的约束条件的前提下 ,将已有的文献中隐式Euler方法数值稳定性的结论由常延迟的情形推广到了变延迟的情形 。
In this paper,the author discusses the numerical stability of implicit Euler for nonlinear delay differential equations(DDEs)with a variable delay.He discreases the condition of the aforementioned equations.When the implicit Euler methods applied to nonlinear DDEs with a variable delay,he proves that the method is stable.
出处
《应用数学》
CSCD
北大核心
2004年第1期22-25,共4页
Mathematica Applicata
基金
国家 8 6 3高技术惯性约束聚变主题资助科研项目
国家自然科学基金资助项目 (1 0 2 71 1 0 0 )
湖南省教育厅资助科研项目 (0 2C5 6 8)