期刊文献+

非线性变延迟微分方程隐式Euler方法的数值稳定性 被引量:4

The Numerical Stability of Implicit Euler Methods for Nonlinear Delay Differential Equations with a Variable Delay
下载PDF
导出
摘要 在减弱对非线性刚性变延迟微分方程初值问题本身的约束条件的前提下 ,将已有的文献中隐式Euler方法数值稳定性的结论由常延迟的情形推广到了变延迟的情形 。 In this paper,the author discusses the numerical stability of implicit Euler for nonlinear delay differential equations(DDEs)with a variable delay.He discreases the condition of the aforementioned equations.When the implicit Euler methods applied to nonlinear DDEs with a variable delay,he proves that the method is stable.
机构地区 湘潭大学数学系
出处 《应用数学》 CSCD 北大核心 2004年第1期22-25,共4页 Mathematica Applicata
基金 国家 8 6 3高技术惯性约束聚变主题资助科研项目 国家自然科学基金资助项目 (1 0 2 71 1 0 0 ) 湖南省教育厅资助科研项目 (0 2C5 6 8)
关键词 非线性变延迟微分方程 隐式EULER法 数值稳定性 初值问题 Delay differential equations Implicit Euler methods Stability
  • 相关文献

参考文献3

二级参考文献2

共引文献32

同被引文献10

  • 1[1]ZENNARO M.Asymptotic Stability Analysis of Runge-Kutta Methods for Nonlinear Systems of Delay Differential Equations[J].Numer.Math.,1997,77:549-563.
  • 2[2]HUANG Cheng-ming,FU Hong-yuan,LI Shou-fu, et al.Stability Analysis of Runge-Kutta Methods for Non-Linear Delay Differential Equations[J].BIT,1999,39:270-280.
  • 3[5]BURRAGE K,BUTCHER J C.Non-Linear Stability of a General Class of Differential Equations Methods[J].BIT,1980,20:185-203.
  • 4Iserles A.Numerical analysis of delay differential equations with variable delays[J].Annals of Numer Math,1994(1):133-152.
  • 5Zennaro M.Asymptotic stability analysis of Runge-Kutta methods fornonlinear systems of delay differential equations[J].Numer Math,1997,77:549-563.
  • 6Huang Cheng-ming,Li Shon-fu,Fu Hong-yuan,et al.Stability and error analysis of one-leg methods for non-linear delay differential equations[J].J Comput Appl Math,1999,103:263-279.
  • 7Huang Cheng-ming,Fu Hong-yuan,Li Shou-fu,et al.Stability analysis of Runge-Kutta methods for non-linear delay differential equations[J].BIT,1999,39:270-280.
  • 8Burrage K,Butcher J C.Non-linear stability of a general class of differential equations methods[J].BIT,1980,20:185-203.
  • 9王文强,李寿佛.非线性刚性变延迟微分方程单支方法的数值稳定性[J].计算数学,2002,24(4):417-430. 被引量:22
  • 10王文强,李寿佛.非线性刚性变延迟微分方程单支方法的D-收敛性[J].计算数学,2004,26(2):247-256. 被引量:3

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部