摘要
研究了同伦方法在双相介质参数反演中的应用。从材料响应的理论合成应与实际测量数据相拟合这一出发点,将参数反演问题转化为非线性算子方程的零点求解问题,然后应用一种大范围收敛的同伦方法求出非线性算子等于零的根作为反问题的解。把这种方法用于Paul(1976)给出的具有解析解的二维双相介质模型的数值模拟,模拟结果表明了同伦反演方法的可行性和稳健性。
The homotopy method is used to inverse material parameters of porous media. According to that the computed response should fit to the measured one, the parameter inversion problem of porous media is reduced to a problem of nonlinear operator equation's zero in this paper. The homotopy method with large scope convergence is used to find the solution of inversion problem. Then the homotopy method is used to inverse the parameters of 2-D wave equations in porous media which has an analytical solution given by Paul in 1976. Numerical simulations indicate that the homotopy method is effective and robust.
出处
《工程力学》
EI
CSCD
北大核心
2003年第4期110-115,共6页
Engineering Mechanics
基金
教育部博士点基金(20010004011)资助
关键词
双相介质
反演
同伦方法
大范围收敛
Computer simulation
Convergence of numerical methods
Inverse problems
Nonlinear equations
Seismology
Wave equations