期刊文献+

算术级数中的华罗庚五素数平方定理

Hua's Five Primes Squares Theorem in Arithmetic Progressions
原文传递
导出
摘要 本文给出了华罗庚五素数平方定理的算术级数形式,证明了其中一个素数可 以取在大模的算术级数中. In this paper, we generalize Hua's five primes squares theorem, and prove that one of the primes can be taken in arithmetic progressions with large moduli.
作者 崔振
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2003年第6期1171-1188,共18页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10171060)
关键词 算术级数 高斯和 奇异级数 Bombieri-Vinogradov均值定理 华罗庚五素数平方定理 Arithmetic progressions Gaussian sum Sigular series Bombieri-Vinogradov type mean-value Theorem
  • 相关文献

参考文献15

  • 1Hua L. K., Some results in the additive prime number theory, Quart. J. Math., 1938, 9: 68-80.
  • 2Balog A., The prime k-tuplets conjecture on average, In: Analytic Number Theory (Allerton, Park, Ill., 1989)(Progr. Math. 85): 47-55; Birkhauser, Boston, 1990.
  • 3Liu J. Y., Liu M. C., The exceptional set in the four prime squres problem Ill, J. Math., 2000, 44: 272-293.
  • 4Liu J. Y., Zhan T., The ternary Goldbach problem in arithmetic progress, Acta Arith., 1997, 82: 197-227.
  • 5Liu M. C.,Zhan T., The Goldbach problem with primes in arithmetic progressions, Analytic Number Theory,ed. by Y. M. Otohashi, London Math. Soc., Lecture Notes Series 247, Cambridge Univ. Press, 1997.
  • 6Maier H., Pomerance C., Unusually large gaps between consecutive primes, Trans. Amer. Math. Soc., 1990,332: 201-237.
  • 7Mikawa H., On primes twins in arithmetic progression, Tsukuba J. Math., 1992, 16: 377-387.
  • 8Wang Y. H., Numbers representable by five prime squares with primes in arithmetic progressions, Acta Arith.,1999, 90: 375-390.
  • 9Zhang Q., On the estimation of nonlinear exponential sum, Master Thesis of Shandong University (in Chinese).
  • 10Pan C. D., Pan C. B., Fundamentals of analytic number theory, Beijing: Science Press, 1991 (in Chinese).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部