期刊文献+

基于3D卷积双路神经网络的考场行为异常识别 被引量:3

Abnormal Behavior Recognition Based on 3D Convolutional Neural Network with Dual Stream Videos
下载PDF
导出
摘要 经过深入研究近年来发展迅速的深度学习技术,并学习卷积神经网络处理视频数据的方法本文,在传统3D卷积神经网络的基础上改进了网络结构。同时,考虑到考场采用双摄像头监控系统,可从不同视角观察考生的考试行为,本文提出了基于双路的考场异常行为识别方法。该方法结合了改进的3D卷积神经网络和双摄像头的监控系统,设计了新的双路网络结构的视频特征提取器,可以提取不同视角下的考生行为特征,并将双路网络提取到的行为特征向量进行融合。通过提取正常考试行为的特征向量,在LibSVM中训练出考场行为的分类器,该分类器可以对测试视频的特征向量进行分类,由此判断测试视频中是否存在异常行为。该方法使用双路视频特征进行异常识别,在考场行为数据集中有着较高的识别正确率。 After a profound research on deep learning technology developed rapidly in recent years and a comprehensive study on the methods of processing the video data with the convolution neural networks,a network structure is improved on the basis of the traditional 3D convolution neural network in this paper.Moreover,considering the fact that the student behavior could be observed from two different perspectives because of the monitoring system in the examination room containing two independent cameras,an abnormal behavior recognition method based on dual stream videos is proposed,where the improved 3D convolution neural network and the dual-camera monitoring system are analyzed simultaneously for designing a novel video feature extractor to extract the behavior characteristics of the students in two perspectives separately.Then,a classifier of behavior in examination with the capacity of sorting the behavior characteristics in the test video and detecting the abnormal behaviors is trained in the LibSVM by extracting the characteristics of normal behavior in examinations.This method utilizes the characteristics of dual steams video to realize the abnormal behavior recognition,exhibiting high recognition accuracy in the behavior data set.
作者 于明学 金鑫 李晓东 吴亚明 YU Mingxue;JIN Xin;LI Xiaodong;WU Yaming(Beijing Electronic Science and Technology Institute,Beijing 100070,P.R.China)
出处 《北京电子科技学院学报》 2018年第4期60-72,共13页 Journal of Beijing Electronic Science And Technology Institute
基金 国家自然科学基金面上项目:“无退化的混沌密码标准实现研究”(61772047)
关键词 3D卷积 双路神经网络 异常行为检测 3D convolution Dual neural network abnormal behavior recognition
  • 相关文献

参考文献5

二级参考文献35

  • 1黄贤武,朱莉,仲兴荣,王加俊.一种新的基于时空马尔可夫随机场的运动目标分割技术[J].电子与信息学报,2006,28(2):367-371. 被引量:10
  • 2易清明,石敏.基于马尔可夫随机场最大后验估计的去块效应方法[J].计算机工程与应用,2006,42(12):6-8. 被引量:2
  • 3李和平,胡占义,吴毅红,吴福朝.基于半监督学习的行为建模与异常检测[J].软件学报,2007,18(3):527-537. 被引量:30
  • 4李旭超,朱善安.图像分割中的马尔可夫随机场方法综述[J].中国图象图形学报,2007,12(5):789-798. 被引量:64
  • 5VERRI A,VERRI R,POGGIO T.Motion field and optical flow:Qualitative properties[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(5):490 -498.
  • 6WU T P,TANG K L,TANG C K.et al.Dense photometric stereo:A markov random field approach[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(11):1834-1835.
  • 7BESAG J.Spatial interactions and the statistical analysis of lattice systems (with discussion)[J].Journal of Royal Statistician Society,1974,36 (2):192-236.
  • 8KOLMOGOROV V,ZABIH R.What energy function can be minimized via graph cuts[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(2):147-159.
  • 9Aggarwal J K, Sangho E Human Motion: Modeling and Recognition of Actions and Interacfions[C].Proc. of the 2nd International Symposium on Data Processing, Visualization and Transmission. Padova, Italy: [s. n.], 2004: 640-647.
  • 10Hu Weiming, Tan Tieniu, Wang Liang, A Survey on Visual Surveillance of Object Motion and Behaviors[J]. IEEE Transl on Systems, Man and Cybernetics, 2004, 34(3): 334-352.

共引文献37

同被引文献10

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部