期刊文献+

基于改进蚁群优化的多目标资源受限项目调度方法 被引量:23

Multi-objective resource constrained project scheduling problem based on improved ant colony optimization
原文传递
导出
摘要 多目标资源受限项目调度是一类典型的NP难组合优化问题,具有广泛的实际应用背景.本文提出了一种带局部搜索的改进蚁群优化算法用于求解多目标资源受限项目调度问题,优化指标为最小化项目工期和资源投资.首先,采用改进的蚁群优化算法获取Pareto解集;其次,通过基于带逻辑约束的Insert和Swap邻域搜索方法对已获得的非支配解进行局部搜索,进一步提高算法的性能;最后,基于PSPLIB国际标准测试集的数值仿真实验与现有最好的算法比较,验证了所提算法的有效性和高效性. Multi-objective resource constrained project scheduling problem is a typical NP-hard combinational optimization problem with a wide range of application background. In this paper, an improved ant colony optimization with local search is proposed to address the multi-objective resource-constrained project scheduling problem, the aim is to minimize the makespan and resource investment criteria. Firstly,the Pareto sets are obtained by using the improved ant colony optimization(IACO). Secondly, the performance of IACO is enhanced by the logic constraints based local searches, i.e., Insert and Swap, and the non-dominated solutions are further improved. Numerical simulations and comparisons with the state-ofthe-art algorithms based on the international standard benchmarks PSPLIB for MORCPSP are carried out, which demonstrate the effectiveness and efficiency of the proposed algorithm.
作者 安晓亭 张梓琪 AN Xiaoting;ZHANG Ziqi(Development and Research Institute,Yunnan University,Kunming 650000,China;Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2019年第2期509-519,共11页 Systems Engineering-Theory & Practice
关键词 项目调度 多目标优化 蚁群算法 局部搜索 project scheduling multi-objective optimization ant colony optimization local search
  • 相关文献

参考文献4

二级参考文献44

  • 1黄永青,梁昌勇,张祥德.基于均匀设计的蚁群算法参数设定[J].控制与决策,2006,21(1):93-96. 被引量:42
  • 2陈英武,方炎申,李菊芳,贺仁杰.卫星任务调度问题的约束规划模型[J].国防科技大学学报,2006,28(5):126-132. 被引量:28
  • 3郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(7):187-192. 被引量:52
  • 4Hapke M, Jaskievicz A, Slowinski R. Fuzzy project scheduling system for software development [ J ]. Fuzzy Sets and Systems, 1994, 67(1): 101-117.
  • 5Hapke M, Jaskievicz A, Slowinski R. Fuzzy multi-mode resource-constrained project scheduling with multiple objectives [ A]. In: Project Scheduling - Recent Models, Algorithms and Applications[ M]. Amsterdam: Kluwer, 1998.
  • 6Hapke M, Jaszkiewicz A, Slowinski R. Pareto simulated annealing for fuzzy multi-objective combinatorial optimization [ J ]. Journal of Heuristics, 2000, 6 (3) : 329-345.
  • 7Wang J. A fuzzy set approach to activity scheduling for product development [ J ]. Journal of Operational Research Society, 1999, 50(12) : 1217-1228.
  • 8Wang J. A fuzzy project scheduling approach to minimize schedule risk for product development [ J ]. Fuzzy Sets and Systems, 2002, 127(2): 99-116.
  • 9Wang J. A fuzzy robust scheduling approach for product development projects [ J ]. European Journal of Operational Research, 2004, 152(1): 180-194.
  • 10Ozdamar L, Alanya E. Uncertainty modelling in software development projects (with case study) [ J]. Annals of Operations Research, 2001, 102(1-4): 157-178.

共引文献436

同被引文献185

引证文献23

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部