期刊文献+

子空间算法在OFDM信道时延估计中的应用 被引量:7

Application of subspace algorithm to time delay estimation in OFDM channels
下载PDF
导出
摘要 到达时延(TOA)和到达时延差(TDOA)定位算法是无线定位中应用最广泛的2种方法,TOA测量值的准确获取将影响定位的精确度。正交频分复用(OFDM)是实现无线多媒体通信的关键技术,利用OFDM信号的导频子载波所携带的信息,参考均匀线列阵的DOA估计过程,提出将MUSIC子空间法应用到OFDM信道的时延估计上。给出了OFDM符号内导频子载波分布的相关条件,对提出算法进行仿真实验,可以看出,导频子载波个数的增加和导频子载波间隔的扩大都可以提高估计精确度。 Time-Of-Arrival(TOA)-and-Time-Difference-Of-Arrival(TDOA)-methods-are-two-main-methods-in-wireless-location.-How-to-get-accurate-TOA-measurements-is-a-key-factor-to-realize-high-accuracy-mobile-location.-Orthogonal-Frequency-Division-Multiplexing(OFDM)-is-one-key-technology-in-wireless-multimedia-communication.-By-taking-advantage-of-the-information-carried-out-by-pilot-subcarriers-of-the-OFDM-signal,-and-referring-to-the-DOA-estimate-for-uniform-linear-array,-MUSIC(Multiple-Signal-Classification)-subspace-algorithm-is-applied-to-time-delay-estimation-of-OFDM-channel.-Related-conditions-for-distribution-of-pilots-within-OFDM-symbol-are-given,-and-simulation-is-performed-on-the-proposed-algorithm.-It-can-be-seen-that-the-increase-of-the-number-of-pilot-sub-carriers-and-the-expanding-of-pilot-sub-carriers-spacing-can-improve-the-estimation-accuracy.
作者 刘超 王英民
出处 《太赫兹科学与电子信息学报》 2014年第4期533-538,共6页 Journal of Terahertz Science and Electronic Information Technology
关键词 正交频分复用 到达时延 多径信道 子空间算法 Orthogonal Frequency Division Multiplexing Time Of Arrival multipath channel subspace algorithm
  • 相关文献

参考文献8

  • 1赵海龙,张健,周劼.下一代无线通信关键技术及其在遥测中的应用[J].信息与电子工程,2012,10(1):1-6. 被引量:14
  • 2Olssen M.Contributions to delay,gain,and offset estimation. . 2008
  • 3Oziewicz M.Estimation of the OFDM channel as the direction-of-arrival problem in antenna array. 7th Int.OFDM-Workshop (InOWo’’01) . 2002
  • 4Schmidt R O.Mutiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation . 1986
  • 5Roy R,Kailath T.ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics Speech and Signal Processing . 1989
  • 6Stoica P,Nehorai A.MUSIC, Maximum Likelihood and Cramer-Rao Bound. IEEE Transactions on Acoustics Speech and Signal Processing . 1989
  • 7Oziewicz,Marian.The Phasor Representation of the OFDM Signal in the SFN Networks. IEEE Transactions on Broadcasting . 2004
  • 8Van Der Veen, Alle-Jan,Deprettere, Ed F.,Swindlehurst, A.Lee.Subspace-based signal analysis using singular value decomposition. Proceedings of Tricomm . 1993

二级参考文献51

  • 1胡梅霞,张海林.基于循环平稳特性的OFDM盲同步算法[J].西安电子科技大学学报,2005,32(2):264-267. 被引量:6
  • 2郭黎利,梁治国,孙志国,胥恒.基于循环移位前导序列的OFDM载波同步方法[J].信息与电子工程,2006,4(5):326-330. 被引量:2
  • 3Weinstein S B,Ebert P M. Data transmission by frequency-division multiplexing using the discrete Fourier transform[J]. IEEE Transactions on Communications, 1971,19(5):628-634.
  • 4Peled A,Ruiz A. Frequency domain data transmission using reduced computational complexity algorithms[C]//Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing. Denver, CO:[s.n.], 1980:964-967.
  • 5Pollet T,Van Bladel M,Moeneclaey M. BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise[J]. IEEE Transaction on communications, 1995,43(234):191-193.
  • 6Schmidl T M,Cox D C. Robust frequency and timing synchronization for OFDM[J]. IEEE Transactions on Communications, 1997,45(12):1613-1621.
  • 7Moose P A. A technique for orthogonal frequency division multiplexing frequency offset correction[J]. IEEE Transactions on Communications, 1994,42(10):2908-2914.
  • 8REN Guangliang,CHANG Yilin,ZHANG Hui,et al. Synchronization method based on a new constant envelop preamble for OFDM systems[J]. IEEE Transactions on Broadcasting, 2005,54(1): 139-143.
  • 9Awoseyila A B,Kasparis C,Evans B G. Robust time-domain timing and frequency synchronization for OFDM systems[J]. IEEE Transactions on Consumer Electronics, 2009,55(2):391-399.
  • 10Chen B,Wang H. Blind estimation of OFDM carrier frequency offset via oversampling[J]. IEEE Transactions on Signal Processing, 2004,52(7):2047-2057.

共引文献16

同被引文献21

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部