期刊文献+

基于压缩采样的PSK信号自动调制识别方法 被引量:1

Automatic modulation recognition of PSK signals based on compressive sampling
下载PDF
导出
摘要 N次方非线性变换方法是通信信号自动调制识别的常用方法,该方法对于相位键控(PSK)信号较为有效。但是,该方法要求的采样率通常要远高于Nyquist速率,这无疑给模拟数字转换器(ADC)带来了巨大的压力。本文利用相位键控(PSK)信号经过非线性变换后频谱的稀疏特性,提出了一种利用压缩采样数据实现PSK信号自动调制识别的方法。文中引入了压缩感知理论,并给出了利用压缩采样数据重构PSK信号非线性变换后频谱的方法,该重构频谱可用于自动调制识别及载频和符号率估计。 The Nth Power Nonlinear Transform(NPT) is a common method for automatic modulation classification, especially for Phase Shift Keying(PSK) signals. Nevertheless,the sampling rate required in the NPT method is typically much greater than Nyquist rate,which causes heavy burden for the Analog to Digital Converter(ADC). Taking advantage of the sparse property of Phase Shift Keying signals spectrum under NPT,the NPT method is developed for PSK signals with Sub-Nyquist rate samples. Combining the NPT method with Compressive Sensing(CS) theory,frequency spectrum reconstruction of the Nth Power Nonlinear Transform of PSK signals is presented, which can be further applied to Automation Modulation Recognition(AMR) and rough estimations of unknown carrier frequency and symbol rate.
出处 《太赫兹科学与电子信息学报》 2016年第1期88-92,共5页 Journal of Terahertz Science and Electronic Information Technology
关键词 压缩感知 相位键控 调制识别 N次方非线性变换 Compressive Sensing Phase Shift Keying signals modulation classification Nth Power Nonlinear Transform
  • 相关文献

参考文献20

  • 1裴立业,江桦.卫星常用调相信号自动调制识别算法[J].太赫兹科学与电子信息学报,2013,11(6):964-969. 被引量:4
  • 2Emmanuel J.Candès,Justin K.Romberg,TerenceTao.??Stable signal recovery from incomplete and inaccurate measurements(J)Comm. Pure Appl. Math. . 2006 (8)
  • 3Hua Li,Yong Xin Zhang.An algorithm of soft fault diagnosis for analog circuit based on the optimized SVM by GA. 2009 9th International Conference on Electronic Measurement & Instruments . 2009
  • 4W.L.Chia,M.B.Wakin.'Automatic modulation recognition for spectrum sensing using nonuniform compressive samples,'. IEEE International Conference on Communications (ICC) . 2012
  • 5Z.Lei,M.Hong.'Wavelet Cyclic Feature Based Automatic Modulation Recognition Using Nonuniform Compressive Samples,'. Vehicular Technology Conference (VTC Fall) . 2013
  • 6M.RUDELSON,R.VERSHYNIN.'On sparse reconstruction from Fourier and Gaussian measurements,'. Information Sciences and Systems . 2006
  • 7I. CVX Research, CVX: Matlab software for disciplined convex programming, version 2.0 beta. http://cvxr.com/ cvx . 2012
  • 8LATRY C,PANEM C,DEJEAN P.Cloud detection with SVM technique. 2007 IEEE Geoscience and Remote Sensing Symposium (IGARSS) . 2007
  • 9HONG Liang,HO K C.Modified CRLB on the modulation parameters of OQPSK signal and MSK signal. 2000 IEEE Wireless Communications and Networking Conference . 2000
  • 10Dobre, O.A.,Abdi, A.,Bar-Ness, Y.,Su, W.Survey of automatic modulation classification techniques: Classical approaches and new trends. IET Communications . 2007

二级参考文献14

  • 1刘磊,江桦,贾永强.基于人工神经网络的DVB-S2数字信号调制模式识别[J].微计算机信息,2005,21(12Z):169-171. 被引量:6
  • 2冯祥,李建东.基于高阶循环累积量的SQAM信号调制识别算法[J].电子与信息学报,2007,29(1):125-128. 被引量:13
  • 3Dobre O A,Abdi A,Bar-Ness Y. Survey of automatic modulation classification techniques:classical approaches and new trends[J].IET Communications,2007,(02):137-156.
  • 4Kim Jae-Hyun,Sin Cheon Sig,Lee Sang Uk. Improved Performance of APSK Modulation Scheme for Satellite System[A].Singapore:[s.n.],2007.1-4.
  • 5Taira S,Murakami E. Automatic classification of analogue modulation signals by statistical parameters[J].{H}IEEE Signal Processing Magazine,1999,(01):202-207.
  • 6Gardner W A,Spooner C M. The cumulant theory of cyclostationary time-series,Part I-II[J].{H}IEEE Transactions on Signal Processing,1994,(12):3387-3428.
  • 7包锡锐.短波通信信号调制分类算法研究及 DSP实现[D]{H}郑州:解放军信息工程大学,2007.
  • 8Wu Dan,Gu Xuemai,Guo Qing. Blind signal-to-noise ratio estimation algorithm with small samples for wireless digital communications[J].{H}LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES,2006,(01):741-748.
  • 9Sui Dan,Ge Lindong. A blind SNR estimation for digital bandpass signals[J].{H}Journal of Electronics,2008,(01):8-13.
  • 10张贤达.现代信号处理[M]{H}北京:清华大学出版社,1995.

共引文献5

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部