期刊文献+

利用级数展开的Z扫描理论分析 被引量:6

Analysis of Z-Scan by Series Expansion
原文传递
导出
摘要 利用级数展开的方法 ,对薄介质的Z扫描理论进行了分析 ,并对于通常所采用的级数展开和菲涅耳衍射分析方法进行了讨论 ,证明了在分析利用高斯光束对薄介质进行Z扫描测量时 ,即使对于大的非线性相移 ,高斯分解方法和菲涅耳衍射积分方法仍具有等效性 ,澄清了人们认识上的一些误解。同时分析了远场小孔的归一化透射率与积分限的关系 ,并对采用高斯分解方法时级数求和的振荡原因进行了分析和讨论 ,给出了消除振荡所需的最小求和数的判据。针对高斯分解方法和菲涅耳衍射积分方法的使用场合 ,也进行了讨论。根据所得结论 ,可以在具体的实验和理论分析中 。 Using series expansion, the Z-scan characteristics of thin optically nonlinear medium are analyzed. Through discussing series expansion and Fresnel intergral method, It is verified that Gaussian decomposition method is equivalent to Fresnel integral method for (Z-scan) measurements of a thin medium using a Gaussian light beam even for a large nonlinear phase shift, and clarify some misunderstandings. Meanwhile, the relationship of normalized transmittance with upper limiter of Fresnel integral is analyzed, the reason for the oscillation of series summation is given and a criterion for minimum summation number of series needed to eliminate the oscillation is suggested while using a Gaussian decomposition method. The situations that are suitable to be applied for Gaussian decomposition method and Fresnel intergral method are discussed. The conclusion given can be used to choose the appropriate and high efficient analytic method in experimental and theoretical analysis.
出处 《光学学报》 EI CAS CSCD 北大核心 2003年第12期1451-1455,共5页 Acta Optica Sinica
基金 国家杰出青年基金(60 0 2 5512 ) 教育部重点研究项目(0 0 0 2 6) 教育部骨干教师计划 霍英东教育基金会青年教师基金(71008)资助课题
关键词 Z扫描 非线性光学 归一化透射率 菲涅耳衍射积分 高斯分解 级数求和 级数展开 nonlinear optics Z-scan normalized transmittance Gaussian decomposition Fresnel diffraction
  • 相关文献

参考文献6

  • 1Sheik-Bahae M, Said A A, Vanstryland E W. Sensitive measurement of optical nonlinearities using a single beam.IEEE. J. Quant. Electron., 1990, 26(4):760-769
  • 2Weaire D, Wherrett B S, Miller D A B et al.. Effect of low-power nonlinear refraction on laser beam propagation in InSb. Opt. Lett., 1979, 4(10):311-313
  • 3Hughes S, Bruzler J M, Spruce G et al.. Fast Fourier transform techniques for efficient simulation of Z-scan measurements. J. Opt. Soc. Am (B), 1995, 12(10):1888-1893
  • 4Samad R E, Vieira N D, Jr. J. Analytical description of Z-scan on-axis intensity based on the Huygens Fresnel principle. J. Opt. Soc. Am (B), 1998,15(11):2742-2747
  • 5姚保利,任立勇,侯洵.基于衍射模型的Z扫描理论[J].光学学报,2002,22(1):19-23. 被引量:15
  • 6Gaskill J D. Linear System, Fourier Transforms, and Optics. New York: Wiley, 1978

二级参考文献7

  • 1ChapplePB,StaromlynskaJ,McDuffRG.Z scanstudiesinthethin andthick samplelimits[].JOptSocAm(B).1994
  • 2Sheik-Bahae M,Said A A,Van Stryland E W.High-sensitivity, single-beam n2 measurements[].Optics Letters.1989
  • 3Sheik-Bahae M,Said A A,Wei T H et al.Sensitive measurement of optical nonlinearities using a single beam[].IEEE Journal of Quantum Electronics.1990
  • 4Sheik-Bahae M,Wang J,Desalvo R et al.Measurement of nondegenerate nonlinearities using a two-color Z-scan[].Optics Letters.1992
  • 5Castillo J,Kozich V P,Marcano A O.Thermal lensing resulting from one-and two-photon absorption studied with a two-color time-resolved Z scan[].Optics Letters.1994
  • 6Kovsh D I,Yang S,Hagan D J et al.Nonlinear optical beam propagation for optical limiting[].Applied Optics.1999
  • 7Liu C,Zeng H,Segawa Y et al.Optical limiting performance of a novel σ - π alternating polymer[].Optics Communication.1999

共引文献14

同被引文献39

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部