期刊文献+

基于神经网络模型的矩量法

Moment Method Based on a Neural Network Model
下载PDF
导出
摘要 本文利用增加了匹配点数目的扩展点匹配方法,将广义的电路方程变为一适宜用具有高度集群、并行特性的Hopfield神经网络求解的超定方程。此法如用模拟电路实现,计算过程即可在纳秒量级完成,且计算时间与变量个数无关,因而理论上可用相同时间获得任意的高精度。 In this paper, a generalized circuit equation in moment method is replaced by a super-definiteequation resulted from the extended collocation method which increases matching point numbers, and the resulted super-definite equation is solved by the Hopfield linear programming neural network possessing massive parallism and strong interconnectivity. Once this method is accomplished by an analog circuit, the computation process could stop within a few time constants (i. e. the order of ns). Moreover, the computation time is independent of the variable numbers. As a result, a arbitrarily high accuracy for solutions will be obtained within the same time in theory.
出处 《通信学报》 EI CSCD 北大核心 1992年第5期80-83,99,共5页 Journal on Communications
关键词 矩量法 神经网络 Moment method, Least-square method, Hopfield neural network, Neural optimization.
  • 相关文献

参考文献3

  • 1张良杰,1992年
  • 2杨宗凯,1991年
  • 3盛剑霓,电磁场数值分析,1984年

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部