期刊文献+

ε不敏感的核Adaline算法及其在图像去噪中的应用 被引量:1

ε-Insensitive kernel-based adaline algorithm and its application
下载PDF
导出
摘要 核Adaline是在最小均方误差基础上,通过迭代产生回归函数,逼近目标函数,方法简单,速度快.引入支持向量机中的不敏感带,推广了核Adaline算法,并将其应用于图像去噪.实验证明,不仅可以有效去除尖峰噪声,而且对随机噪声也具有一定的抑制作用. Kernel_based Adaline learning algorithm, presented on the basis of least mean square error, approximates object function by regression with iteration. This technique is easy to understand and runs faster to optimal solution. By introducing ε-insensitive zone of support vector machine, Kernel_Based Adaline algorithm is modified to get better performance. Image denoising as an application of the amendatory algorithm. It can not only effectively eliminate spike noise as outliers, but also smooth random noise within this ε-insensitive zone. Finally, analysis and experiments on the benchmark image and pretreatment image of photo show the superiority of this method.
出处 《安徽工程科技学院学报(自然科学版)》 2003年第4期49-52,共4页 Journal of Anhui University of Technology and Science
关键词 ADALINE 核函数 支持向量机 支持向量回归 最小均方误差 灰度图像 adaline kernel function support vector machine support vector regression least mean square error grey level image
  • 相关文献

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部