期刊文献+

完备空间中集值映射的积分

Integration of set-valued mapping with values in the complete spaces
下载PDF
导出
摘要 在完备的局部凸拓扑线性空间上,针对有界的、可测的集值映射X(σ),构造了一个Cauchy网集合,在此基础上研究和讨论了X(σ)的集值映射积分的可积性、积分区域的可加性等,同时证明了这种集值映射积分在一定条件下的唯一性、在一定意义下的绝对连续性. With a Cauchy net by bounded and measurable set -valued mapping X(σ) in the complete locally convex linear topological space, the integrability of integration of set -valued mapping X(σ) and the additivity of set-valued mapping X(σ)'s integral field are discussed, and the uniqeness in a certain condition and the absolute continuity in a certain sense of integration of set -valued mapping are proved.
出处 《黑龙江大学自然科学学报》 CAS 2003年第4期15-17,共3页 Journal of Natural Science of Heilongjiang University
基金 黑龙江省自然科学基金资助项目(E00-11)
关键词 拓扑空间 集值映射 积分 topological space set-valued mapping integration
  • 相关文献

参考文献1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部