摘要
Effects of strong magnetic fields on the columnar-to-equiaxed transition(CET) have been investigated experimentally.Experimental results show that the application of a strong magnetic field causes a dendrite fragmentation and then the CET.The thermoelectric magnetic force acting on cells/dendrites and equiaxed grains in the mushy zone has been studied numerically.Numerical results reveal that a torque is created on cells/dendrites and equiaxed grains and the value of the thermoelectric magnetic force increases as the magnetic field intensity increase.This torque breaks cells/dendrites and drives the rotation of equiaxed grains.As a consequence,the CET will occur during directional solidification under a strong magnetic field.This may initiate a new method to induce the CET via an applied strong magnetic field during directional solidification.
Effects of strong magnetic fields on the columnar-to-equiaxed transition(CET) have been investigated experimentally.Experimental results show that the application of a strong magnetic field causes a dendrite fragmentation and then the CET.The thermoelectric magnetic force acting on cells/dendrites and equiaxed grains in the mushy zone has been studied numerically.Numerical results reveal that a torque is created on cells/dendrites and equiaxed grains and the value of the thermoelectric magnetic force increases as the magnetic field intensity increase.This torque breaks cells/dendrites and drives the rotation of equiaxed grains.As a consequence,the CET will occur during directional solidification under a strong magnetic field.This may initiate a new method to induce the CET via an applied strong magnetic field during directional solidification.
基金
Item Sponsored by National natural Science Foundation of China(No.51171106 and 2011CB610404)
the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning