期刊文献+

基于RST改进NN模型的高压输电线系统故障诊断 被引量:2

A RST-based Improved NN Model for Fault Diagnosis of High Voltage Transmission Line System
下载PDF
导出
摘要 为了克服实时诊断信息在形成和传递过程中的畸变而导致故障诊断结果的错误 ,在基于粗糙集理论 (RoughSetTheory,简称RST)的高压输电线系统故障诊断模型的研究基础上 ,充分利用神经网络(NeuralNetworks,简称NN)的泛化能力和粗糙集理论强大的定性分析能力 ,构造了RST与NN相结合的故障诊断模型 .首先利用RST从诊断样本中提取领域知识 ,然后利用所提取的诊断对象知识属性形成诊断NN的初始结构 ,进而增强诊断NN的智能性和容错性 .通过高压输电线系统故障诊断的仿真结果比较 ,证明了该模型的有效性和通用性 .该模型即使在诊断信息不完整的情况下 ,也具有高的诊断容错性能 。 To overcome the mis-diagnosis of fault caused by t he distortion of real-time diagnosis information during the generation and tran sfer processes, on the basis of the research into the RST (Rough Set Theory)-ba sed fault diagnosis model of high voltage transmission line system and by utiliz ing the generalization ability of neural network (NN) and the great qualitative analysis ability of RST, the fault diagnosis model with the combination of RST a nd NN was constructed. In this approach, RST was used to extract knowledge regio n data set from diagnosis samples, and the basic structure of NN was built on th e basis of diagnosis knowledge attribute. Thus the intelligence and fault tolera nce performance of diagnosis NN system were improved. The validity and commonali ty of the proposed model were proved by the comparison of simulation results of the fault diagnosis system. The proposed model has excellent fault tolerance per formance even though the diagnosis information is not complete, so it is of impo rtant practical value in the real-time fault diagnosis of electric power system .
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第1期24-28,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目 (598770 16)
关键词 输电线系统 故障诊断 容错性能 粗糙集理论 神经网络 transmission line system fault diagnosis fault t olerance performance rough set theory neural network
  • 相关文献

参考文献8

  • 1郝培锋,肖文栋,祝钢,徐心和.关于BP网络变结构问题的研究[J].控制与决策,2001,16(3):287-298. 被引量:12
  • 2束洪春,孙向飞,司大军.基于粗糙集理论的配电网故障诊断研究[J].中国电机工程学报,2001,21(10):73-77. 被引量:109
  • 3廖志伟,孙雅明.基于数据挖掘模型的高压输电线系统故障诊断[J].电力系统自动化,2001,25(15):15-19. 被引量:40
  • 4Pawlak Z. Rough sets [ J ]. International Journal of Information and Computer Science, 1982,11:341 - 356.
  • 5Andrew D Back, Thomas P Trappenberg. Selecting inputs for modeling using normalized higher order statistics and independent component analysis [ J ]. IEEE Trans on Neural Networks ,2001,12:612 - 617.
  • 6Yeung D Y. Constructive neural network as estimators of Bayesian discriminent function [ J ]. Pattern Recognition, 1993,26 : 189 - 204.
  • 7McInerney M, Dhawan A P. Use of Genetic algorithm with back propagation in training of feed forward neural networks [ A], [ s n ]. IEEE Proc of IEEE International Conference on Neural Networks [ C]. San Francisco:IEEE, 1993. 203 - 208.
  • 8Staal A Vinterbo. Predictive models in medicine:Some methods for construction and adaptation [ D ]. Trondheim : Department of Computer Science, Norwegian University of Science and Technology, 1999.

二级参考文献14

  • 1曾黄麟.粗集理论及其应用(一)[J].四川轻化工学院学报,1996,9(1):18-28. 被引量:41
  • 2Erol Gelenbe,IEEE Trans Neural Networks,1999年,10卷,1期,3页
  • 3Cho Sungzoon,IEEE Trans Neural Networks,1997年,8卷,4期,874页
  • 4Hao Peifeng,Proc'96 Int Conf High New Technology and Traditional Industry,1996年
  • 5廖志伟,电力系统自动化,2000年,25卷,11期,62页
  • 6姜惠兰,博士论文,1999年
  • 7李勇敏,清华大学学报,1999年,39卷,1期,110页
  • 8李勇敏,清华大学学报,1999年,39卷,1期,117页
  • 9Zhang Q,IEE Proceeding of 4th Int Conference on Advances in Power System Control Operation Management,1998年,597页
  • 10Madan S,Proceedings of 1997 IEEE Canadian Conference on Electrical and Computer Engineering,1997年,403页

共引文献152

同被引文献21

  • 1文福拴,韩祯祥.基于遗传算法和模拟退火算法的电力系统的故障诊断[J].中国电机工程学报,1994,14(3):29-35. 被引量:100
  • 2Spech D F. A general regression neural network [J].IEEE Trans on Neural Networks,1991,2(6) :568 -576.
  • 3Byung-Geun Hyun, Kwanghee Nam. Faults diagnoses of rotaing machines by using neural nets: GRNN and BPN[A]. Proceedings of the 1995 IEEE IECON 21st International Conferece on Industrial ECI[C]. Orlando, 1995.1456 - 1461.
  • 4Pawlak Z,Grzymada-Busse J,Slowinski R,et al.Rough sets[J].Communications of ACM,1995,38(11):89-95.
  • 5Pawlak Z.Rough sets and data analysis[C]∥Procee-dings of the 1996 Asian Fuzzy Systems Symposium:Soft Computing in Intelligent Systems and Information Proces-sing.Kenting:[s.n.],1996:1-6.
  • 6Pawlak Z.Why rough sets?[C]∥Proceedings of Fifth IEEE International Conference on Fuzzy Systems.New Orleans:[s.n.],1996:738-743.
  • 7Slowinski K.Rough classification of HSV patients intelligent decision support[M]∥Handbook of Applications and Advances of the Rough Sets Theory.London:Kluwer Academic Publishers,1992:77-93.
  • 8Pawlak Z.Rough set theory for intelligent industrial applications[C]∥Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials.Honolulu:[s.n.],1999:37-44.
  • 9Bautista R,Millan M,Francisco-Diaz J.An efficient implementation to calculate relative core and reducts[C]∥18th International Conference of the North American Fuzzy Information Processing Society.New York:[s.n.],1999:791-794.
  • 10Xu Ning,Zhang Yun.An efficient reduction algorithm of high-dimensional decision tables based on rough sets theory[C]∥Proceedings of the 5th World Congress on Intelligent Control and Automation.Shanghai:[s.n.],2004:4 304-4 308.

引证文献2

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部