期刊文献+

一种基于云模式连续型属性离散化的算法 被引量:1

An Algorithm of Continuous-valued Attribute Discretization Based on Cloud Models
下载PDF
导出
摘要 在数据挖掘研究过程中,对连续型属性一般要进行离散化。特别是在模糊数据挖掘中,还要对离散化的区间进行模糊处理。文中依托云模式,并结合粗糙集理论提出一种新的连续型属性离散化算法。 In the process of data mining, it is necessary to discretize the continuous-valued attributes. In the process of fuzzy data mining, it is also necessary to make the intervals of discretization fuzzy. This paper gives a new discretization algorithm of continuous-valued attributes based on cloud models together with the theory of rough sets. After a set of cuts is decided based on rough set theory, a membership cloud is constructed on each cut by maximum-likelihood method, and the membership clouds are mergered according to subsethood measure at last. Borders of the concepts produced by this method are fuzzy, and the inexactness of the original information system can be kept .
作者 皋军 王建东
出处 《计算机应用》 CSCD 北大核心 2004年第2期135-137,共3页 journal of Computer Applications
关键词 模糊数据挖掘 离散化 隶属云 包含度 fuzzy data mining discretization membership clouds subsethood measure
  • 相关文献

参考文献6

二级参考文献24

  • 1李德毅.发现状态空间理论[J].小型微型计算机系统,1994,15(11):1-6. 被引量:25
  • 2李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1250
  • 3中国统计局.中国统计年鉴[M].北京:中国统计出版社,1987..
  • 4[1]Agrawal R, Imielinske T, Swami A. Mining association rules between sets of items in large databases[C]. In Proceedings of the ACM SIGMOD International Conference on the Management of Data, Washington D.C., 1993.207-216.
  • 5[2]Srikant R, Agrawal R.Mining quantitative association rules in large relational tables[C].In Proceedings of the ACM SIGMOD International Conference on the Management of Data, Montreal, Canada, 1996.
  • 6[3]Argrawal R, Srikant R. Fast algorithms for mining association rules in large databases[C].In 20th International Conference on Very Large Databases, Santiagom Chile, 1994.
  • 7[4]Saraseere A, Omiecinsky E, Navathe S. An efficient algorithm for mining association rules in large databases[C]. In 21st International Conference on Very Large Databases, Zurich, Switzerland, 1995.
  • 8[5]Cheung D W, Wong C Y. Maintenance of discovered association rules in large databases:an incremental updating technique[C].In Proceedings of 1996 International Conference on Data Engineering, New Orleans, Louisiana, 1996.
  • 9[7]Hathaway R J, Davenport J W, Bezdek J C. Relational duals of the c-means algorithms[J]. Pattern Recognition, 1989,22:205-212.
  • 10李德毅,计算机智能接口与智能应用论文集,1993年

共引文献1318

同被引文献10

  • 1Randy Kerber. ChiMerge: discretization of numeric attributes [C]. In : Proceeding of National Conference on Artificial Intelligence, 1992, 123-128.
  • 2Usama M Fayyad, Keki B Irani. Multi-interval discretization of continuous-valued attributes for classification learning[C]. In: Proceeding of International Joint Conference on Artificial Intelligence, 1993, 1022-1029.
  • 3Jason Catlett. On changing continuous attributes into ordered discrete attributes[C]. In: Proceeding of European Conference on Machine Learning, 1991, 164-178.
  • 4Girish Kumar Singh, Sonajharia Minz. Discretization using clustering and rough set theory[C]. In: Proceeding of International Conference on Computing: Theory and Applications, 2007, 330-336.
  • 5Han J W, Kamber M. Data mining concepts and techniques [M]. Beijing: Machine Press, 2001.
  • 6Hung Son Nguyen, Andrzej Skowron. Quantization of real values attributes : rough set and Boolean reasoning approaches[C]. In : Proceedings of Second Joint Annual Conference on Information Science, Wrightsville Beach, North Carolina, 1995, 34-37.
  • 7Wang Guo-yin. Rough set theory and knowledge acquisition [M]. Xi' an Jiaotong University Press, 2001.
  • 8Pawlak Z. Rough sets: theoretical aspects of reasoning about dat[M]. Boston: Kluwer Academic Publishers, 1991.
  • 9Hettich S, Blake C L, Merz C J. UCI repository of machine learning databases [EB/OL ]. http://www, its. uci. edu/- mlearn/MLRepository, html. Irvine, CA: University of California, Department of Information and Computer Science, 1998.
  • 10赵军,王国胤,吴中福,唐宏,李华.基于粗集理论的数据离散化方法[J].小型微型计算机系统,2004,25(1):60-64. 被引量:34

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部