摘要
对图G(V,E),μ(G)称为G的Mycielski图,V(μ(G))=V(G)∪{v′|v∈V(G)}∪{w},E(μ(G))=E(G)∪{uv′|u∈V(G),v′∈V′,且uv∈E(G)}∪{wv′|v′∈V′}.其中,w V(G),V′={v′|v∈V(G)}.证明了圈Cp的Mycielski图M(Cp)的均匀全色数为Δ(M(Cp))+1,其中Δ(M(Cp))为M(Cp)的最大度.
It is μ(G) called Mycrelski Graph of G, if V(μ(G))=V(G)∪{V′/V∈V(G)}∪{w}wV(G) and E(μ(G))=E(G)∪{uv′|u∈V(G),v′∈V′,uv∈E(G)}∪{wv′|v′∈V′} where wV(G),V′={v′|v∈V(G)}.In this paper , we have proved χ_(et)(C_p)=p+1,where χ_(et)(C_p),denots equitable total chromatic number of Mycielski graph of cycle graph C_p.
出处
《兰州铁道学院学报》
2003年第6期1-3,共3页
Journal of Lanzhou Railway University
基金
国家自然科学基金资助项目(19871036).
关键词
圈
MYCIELSKI图
均匀全染色
图论
graph
Mycirelski graph
circle graph
equitable total chromatic number