期刊文献+

基于仿射变换模型的图象特征点集配准方法研究 被引量:17

Registration for Feature Point Sets Based on Affine Transformation
下载PDF
导出
摘要 图象配准是计算机视觉中目标识别的一种基本方法,其目的是在待识别图象中寻找与模型图象的最佳匹配.目前,对于图象间的变换为相似变换的情形已有闭合公式.本文则分别运用最小二乘和矩阵伪逆两种方法,对图象间的变换为仿射变换的情形进行了研究,并给出了简单的闭合公式.实验表明这种方法精确、稳定、受噪声影响小. This work investigates the image registration from feature point sets. Image registration is a fundamental object recognition method in computer vision and it aims to find best matches between two or more point sets when there are geometric distortions, point measurement errors and contamination present. Up to now > closed form solution has been developed only when the geometric distortion is similarity transformation. This paper concentrates on image registration from feature point sets when the geometric distortion between the two images is affine transformation and gives closed form solution for the transformation parameters that minimize the root-mean-squared residual error of the image points by the linear least-squares techniques and the pseudo-inverse of matrix respectively. In order to give the simple closed form solution, the image points are represented by homogeneous coordinates and the theories of matrix are used. The algorithms are evaluated on both synthetic and real world images and the experiment results show that the methods given in this paper are accurate, stable and are only affected slightly by noise.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2003年第10期1121-1125,共5页 Journal of Image and Graphics
基金 国家自然科学基金项目(60143003) 安徽省教育厅自然科学研究项目(2003KJ005)
关键词 仿射变换 图象配准 计算机视觉 目标识别 Computer image processing, Image registration, Affine transformation, Least-squares, Pseudo-
  • 相关文献

参考文献1

二级参考文献9

  • 11,Lisa Gottesfeld Brown. A survey of image registration techni-ques. ACM Computing surveys, 1992,24(4):325~376.
  • 22,Feldmar J, Ayache N J Rigid. Affine and loc ally affineregistration of free-form surfaces. International Journal of Computer Vision, 1996,18(2):99~119.
  • 33,Moshfeghi M, Ranganath S, Nawyn K. T hree-dimensionalelast ic matching of volumes, IEEE Trans. on Image Processing, 1994,3(2):128~138.
  • 44,Kass M, Witkin A, Terzopoulos D. Sna kes:active contourmodels. International Journal of Computer Vision, 1 988,1(4):321~331.
  • 55,Jain A K, Zhong Y, Lakshmanan S. Object matching using deformable templates . IEEE Trans. on Pattern Recognition and Machine Intelligence, 1996,18(3 ):267~278.6,Umeyama S. Least squares estimation of transfor mationparameters between point sets. IEEE PAMI, 1991,13(4):376~380.
  • 67,Bookstein F L. Shape and the information in medical images:a decade of the m orphometric synthesis. Computer Vision and Image Understanding, 1997,66(2):97~11 8.
  • 78,Scott G L, Longuet-Higgins H C. An algorithm for associating the features o f 2 images. Proceedings of the Royal Society of London Series B-Biological, 199 1,244(1309):21~26.
  • 89,Ranade S, Rosenfeld A. Point pattern matching by relaxation. Pattern Recognit ion, 1980,12(4):269~275.
  • 910,Ogawa H. Labeled point pattern matching by fuzzy relaxation. Pattern Rec ognition, 1984,17(5):569~573.

共引文献7

同被引文献138

引证文献17

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部