期刊文献+

ω循环型边界条件 被引量:4

ω-CIRCULANT BOUNDARY CONDITION
下载PDF
导出
摘要 通过利用预条件共轭梯度法对对称正定Toeplitz矩阵系统进行分析 ,重点介绍了一种新的嵌入式预条件矩阵构造方法 ,证明了以前的预条件矩阵构造方法大都是这种方法的特例 .提出了ω循环型边界条件 ,并将其与普通循环型及螺旋型边界条件作了分析、比较后得到了一种新的边界条件即混合型边界条件 . We use the preconditioned conjugate gradient (PCG) method to analyze the symmetric positive-definite Toeplitz systems. Then we present a new embedding constructing preconditioner way and prove that many other ways of constructing preconditioners are generally the special cases of this method. We propose the ω-circulant boundary condition and make comparison with both the ordinary circulant boundary condition and helix one. Furthermore, we obtain a new type of boundary condition: the mixed boundary condition.
作者 梅金顺 刘洪
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2003年第6期835-841,共7页 Chinese Journal of Geophysics
基金 国家自然科学基金委和大庆石油管理局联合资助 ( 4 9894190 )
关键词 ω循环 边界条件 预条件共轭梯度法 TOEPLITZ矩阵 Toeplitz matrices, Preconditioned conjugate gradient method, ω-circulant, Boundary conditions.
  • 相关文献

参考文献20

  • 1蒋增荣,曾泳泓,余品能.快速算法长沙:国防科技大学出版社,1993JIANG Zengrong, ZENG Yonghong, YU Pinneng. Fast Algorithm.Changsha: National Defence Scientific University Press, 1993
  • 2Bunch J. Stability of methods for solving Toeplitz systems of equations.SIAM J. Sci. Stat. Comput. , 1985,6:349 ~ 364
  • 3Gilliam D, Martin C, Lund J. Analytic and numerical aspects of the observation of the heat equation. Proc. 26th IEEE Conf. On Decision and Control, 1987,2: 975 ~ 976
  • 4Haykin S. Adaptive Filter Theory (2nd ed). New Jersey: Prentice Hall, Englewood Cliffs, 1991. 167 ~ 168
  • 5King R, Ahmadi M, Gorgui-Naguib R, et al. Digital Filtering in One and Two Dimensions: Design and Applications. New York: plenum Press, 1989. 368 ~ 379
  • 6Clearbout J. Multi-dimensional recursive filters via a helix. Geophysics, 1998, 63(5): 1532~ 1541
  • 7Strang G. A proposal for Toeplitz matrix calculations. Stud. Appl.Math., 1986,74:171 ~ 176
  • 8Olkin J. Linear and Nonlinear Deconvolution Problems [ PH. D. thesis]. Houston: Rice Univ., 1986
  • 9Axelsson O, Barker V. Finite Element Solution of Boundary Value Problems, Theory and Computation. Orlando: Academic Press, 1984
  • 10Strang G, Edelman A. The Toeplitz-Circulant Eigenvalue Problem Ax =λ Cx. In: L Bragg, J Dettman, eds. Oakland Conf. On PDE and Appl. Math..New York: Longman Sci. Tech., 1987

共引文献5

同被引文献57

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部