摘要
利用陈度量和陈联络,作者构造了Stein流形上(p,q)微分形式的具有权的B-M核B(z,ζ)、Leray核L(z,ζ)、Henkin核H(z,ζ)和核T(z,ζ)以及微分形式P(z,ζ),并利用局部化技巧,证明了这些核的积分主值是存在的,以及核B、L—B+T和B(f∧H)是Cauchy-Riemann方程=[△]+P的基本解,作者还讨论了与这些核相应的算子L、H和T的奇点的传播。
By using Chern metric and connection, the B-M kernel B,Leray kernel L,Henkin kernel H with weight factors, a kernel T and a differential form P are constructed on a Stein manifold. Using the technique of localization, the author proves that the principal value of integral with kernel B,L and H exist respectively, and that the kernel B,L-B+T and B + (?)(f∧H) satisfy the fundamental equation (?)E=[Δ]+P respectively. Further, the author discusses the propagation of singularities of the operators L,H and T which are induced by kernels L,H and T respectively.
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
1992年第2期111-115,共5页
Journal of Xiamen University:Natural Science
基金
国家自然科学基金
福建省自然科学基金
关键词
STEIN流形
C-R方程
积分主值
Stein manifold, Cauchy-Riemann equation, Weight factor, Chern metric and connection, Principal value of Cauchy integral, Technique of localization