期刊文献+

BSV、DHS等模型中资产定价与模糊不确定性下资产定价在逻辑结构上的一致性 被引量:10

The Consistency of Logical Structure about Asset Pricing in BSV,DHS model and Asset Pricing under Ambiguity
原文传递
导出
摘要 虽然BSV、DHS等行为金融模型对动量效应的微观机制进行了研究,但这些行为理论模型存在着投资者行为逻辑假设的非一致性问题。首先,本文以模糊不确定性下建立起的资产定价模型为参照物,将BSV、DHS等理论模型中的资产定价与模糊不确定性下资产定价进行了对比研究发现,这些行为金融资产定价都与模糊不确定性下资产定价具有数学结构上的一致性。其次,根据行为决策学、心理学与神经科学等最新理论的成果表明,BSV、DHS等行为金融模型中的投资者行为模式也可从模糊不确定性的概念框架下得到解释。通过以上两方面的探讨,可以看出BSV、DHS等理论模型中的资产定价与模糊不确定性下资产定价具有逻辑结构上的一致性,可将BSV、DHS等行为金融模型中的资产定价置于一个更为基础的统一逻辑框架,试图解决行为金融模型中投资者行为逻辑假设的非一致性问题。 Although the behavioral financial models,such as BSV and DHS,can explain the microscopic mechanism of momentum effect in stock market,there exists the non-consistency of investors' behavior assumptions.Firstly,as a reference from the asset pricing under ambiguity,a comparative study between the asset pricing in BSV,DHS model with the asset pricing under ambiguity is made,and it is found that they have a consistent mathematical structure.Secondly,according to the latest theories of decision-making,psychology and neuroscience,these assumptions of investor's behavior in BSV,DHS model can explain in a view of ambiguity reasonablely.Through the above two aspects,it shows that there is consistency of logical structure about asset pricing in BSV,DHS model and asset pricing under ambiguity.The asset pricing in BSV,DHS model can be regarded as different aspects of asset pricing under ambiguity and may be placed on a fundamental logic framework under ambiguity.The non-consistency of investors' behavior assumptions in these behavioral finance models can be solved to a degree.
作者 徐元栋
出处 《中国管理科学》 CSSCI CSCD 北大核心 2017年第6期22-31,共10页 Chinese Journal of Management Science
基金 教育部长江学者和创新团队发展计划项目(PCSIRT0860) 教育部人文社会科学研究一般项目(08JA790104)
关键词 反应不足 反应过度 行为金融模型 奈特不确定性 模糊不确定性 资产定价 underreaction overreaction behavioral finance model Knightian uncertainty ambiguity asset pricing
  • 相关文献

参考文献5

二级参考文献109

  • 1Knight, F. H.. Risk, Uncertainty and Profit [M]. New York: Houghton Mifflin Company, 1921.
  • 2Gilboa, I. , Schmeidler, D.. Max-rain expected utility theory with non-unique prior [J]. Journal of Mathematical Economics, 1989, 18: 141-153.
  • 3Ellsberg, D.. Risk, ambiguity and the savage axioms [J]. Quarterly Journal of Economics, 1961, 75: 643-669.
  • 4Hansen, L. P. , Sargent, T. J.. Discounted linear exponential quadratic gaussian control [J]. IEEE Transactions on Automatic Control, 1995, 40: 968-971.
  • 5Markowitz, H. M.. Mean-variance analysis in portfolio choice and capital markets [J]. Journal of Finance, 1952, 7: 77-91.
  • 6Merton, R.. Optimum consumption and portfolio rules in a continuous time model[J]. Journal of Economic Theory, 1971, 3: 373-413.
  • 7Savage, L. J.. The Foundations of Statistics[M]. New York: Wiley Publications, 1954.
  • 8Deng, X. T., Li, Z. F., Wang, S. Y.. A minimax portfolio selection strategy with equilibrium [J]. Euro pean Journal of Operational Research, 2005, 166:278 -292.
  • 9Garlappi, L. , Uppal, R. , Wang, T.. Portfolio selection with parameter and model uncertainty: A multi-prior approach [J]. Review of Financial Studies, 2007, 20 (1): 41-81.
  • 10Uppal, R. , Wang, T.. Model misspeci fication and under-diversification [J]. Journal of Finance, 2003, 58: 2465-2486.

共引文献27

同被引文献122

引证文献10

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部