期刊文献+

An Approach to Continuous Approximation of Pareto Front Using Geometric Support Vector Regression for Multi-objective Optimization of Fermentation Process 被引量:1

用于发酵过程多目标优化的几何支持向量回归Pareto前沿的连续近似方法(英文)
下载PDF
导出
摘要 The approaches to discrete approximation of Pareto front using multi-objective evolutionary algorithms have the problems of heavy computation burden, long running time and missing Pareto optimal points. In order to overcome these problems, an approach to continuous approximation of Pareto front using geometric support vector regression is presented. The regression model of the small size approximate discrete Pareto front is constructed by geometric support vector regression modeling and is described as the approximate continuous Pareto front. In the process of geometric support vector regression modeling, considering the distribution characteristic of Pareto optimal points, the separable augmented training sample sets are constructed by shifting original training sample points along multiple coordinated axes. Besides, an interactive decision-making(DM)procedure, in which the continuous approximation of Pareto front and decision-making is performed interactively, is designed for improving the accuracy of the preferred Pareto optimal point. The correctness of the continuous approximation of Pareto front is demonstrated with a typical multi-objective optimization problem. In addition,combined with the interactive decision-making procedure, the continuous approximation of Pareto front is applied in the multi-objective optimization for an industrial fed-batch yeast fermentation process. The experimental results show that the generated approximate continuous Pareto front has good accuracy and completeness. Compared with the multi-objective evolutionary algorithm with large size population, a more accurate preferred Pareto optimal point can be obtained from the approximate continuous Pareto front with less computation and shorter running time. The operation strategy corresponding to the final preferred Pareto optimal point generated by the interactive DM procedure can improve the production indexes of the fermentation process effectively. The approaches to discrete approximation of Pareto front using multi-objective evolutionary algorithms have the problems of heavy computation burden, long running time and missing Pareto optimal points. In order to overcome these problems, an approach to continuous approximation of Pareto front using geometric support vector regression is presented. The regression model of the small size approximate discrete Pareto front is constructed by geometric support vector regression modeling and is described as the approximate continuous Pareto front. In the process of geometric support vector regression modeling, considering the distribution characteristic of Pareto optimal points, the separable augmented training sample sets are constructed by shifting original training sample points along multiple coordinated axes. Besides, an interactive decision-making(DM)procedure, in which the continuous approximation of Pareto front and decision-making is performed interactively, is designed for improving the accuracy of the preferred Pareto optimal point. The correctness of the continuous approximation of Pareto front is demonstrated with a typical multi-objective optimization problem. In addition,combined with the interactive decision-making procedure, the continuous approximation of Pareto front is applied in the multi-objective optimization for an industrial fed-batch yeast fermentation process. The experimental results show that the generated approximate continuous Pareto front has good accuracy and completeness. Compared with the multi-objective evolutionary algorithm with large size population, a more accurate preferred Pareto optimal point can be obtained from the approximate continuous Pareto front with less computation and shorter running time. The operation strategy corresponding to the final preferred Pareto optimal point generated by the interactive DM procedure can improve the production indexes of the fermentation process effectively.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第10期1131-1140,共10页 中国化学工程学报(英文版)
基金 Supported by the National Natural Science Foundation of China(20676013,61240047)
关键词 Continuous approximation of PARETO front GEOMETRIC support vector regression Interactive DECISION-MAKING procedure FED-BATCH FERMENTATION process Continuous approximation of Pareto front Geometric support vector regression Interactive decision-making procedure Fed-batch fermentation process
  • 相关文献

参考文献5

二级参考文献9

共引文献42

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部