期刊文献+

改进DST在数控机床滚珠丝杠副智能故障诊断中的应用 被引量:1

Applications of improved D-S evidence theory in CNC machine ball screw intelligent fault diagnosis
下载PDF
导出
摘要 针对滚珠丝杠副多故障问题、单一传感器的不确定性及Dempster合成法则本身存在的不足。提出基于改进DST及RBF神经网络的滚珠丝杠副故障诊断方法。将RBF神经网络的输出结果作为各焦元的基本概率分配,滚珠丝杠副的4种故障类型作为系统的识别框架,引入证据可信度概念,根据新的合成公式进行决策级融合。试验结果表明,改进的新合成公式提高了滚珠丝杠副故障诊断的准确率,使冲突证据合成的结果更理想,取得较好的效果。 According to more problems of ball screw,the uncertainty of single sensor and synthesis of Dempster rule itself exists insufficiency,proposing fault diagnosis methods of ball screw based on improved D-S evidence theory and RBF neural network.The RBF neural network output as the BPA of each focal element,four kinds of fault types of the ball screw as a recognition framework system,introducing a concept of credibility of evidence,and according to a new synthesis formula for decision level fusion.The results show that the improved new synthetic formula increases the accuracy of fault diagnosis ball,the conflict of evidence synthesis results better,to achieve better results.
机构地区 青岛理工大学
出处 《制造技术与机床》 北大核心 2014年第9期163-166,共4页 Manufacturing Technology & Machine Tool
基金 国家自然科学基金项目(51075220) 青岛市科技计划基础研究项目(12-1-4-4-(3)-JCH) 山东省高等学校科技计划项目(J13LB11)
关键词 RBF神经网络 D-S证据理论 数控机床 滚珠丝杠副 故障诊断 RBF neural network D-S evidence theory CNC machine tools ball screw fault diagnosis
  • 相关文献

参考文献5

二级参考文献27

  • 1杨丽娟,张白桦,叶旭桢.快速傅里叶变换FFT及其应用[J].光电工程,2004,31(B12):1-3. 被引量:98
  • 2杨风暴.证据冲突的衡量方法研究[J].华北工学院学报,2005,26(1):58-60. 被引量:12
  • 3陈丹,李京华,黄根全,许家栋.基于证据理论的战场被动声多目标识别研究[J].系统仿真学报,2007,19(6):1323-1325. 被引量:3
  • 4[1]Ronald R.Yager.On the dempster-shafer framework and new combination rules[J].Information Sciences,1987,41:93-137.
  • 5[2]G.Shafer.A mathematical theory of evidence[M].Princeton U.P.,Princeton,1976.
  • 6[3]A.P.Dempster.Upper and lower probabilities induced by a multi-valued mapping[J].Ann.Math.Statist.1967,38:325-339.
  • 7Lefevre E,Colot O, Vannoorenberghe P. Belief function combination and conflict management[J]. Information Fusion,2002, 3(2):149-162.
  • 8XIE Mu-jun, XU Shi -yong. Fault Diagnosis of Air Compressor Based on RBF Neural Network [ C ]//In- ternational Conference on Mechatronic Science, Elec- tric Engineering and Computer ( MEC ), 2011 : 887 - 890.
  • 9Eric W W, Debroy V, Golden R, et al. Effective Soft- ware Fault Localization Using an RBF Neural Network [ J ]. IEEE Transactions on Reliability , 2011 ( 99 ) : 1 - 21.
  • 10Leonard J A, Kramer M A. Radial Basis Function Net- works for Classifying Process Faults [ J ]. IEEE Control Systems, 1991,11 (3) :31 - 38.

共引文献495

同被引文献4

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部