摘要
本文对三层热壁水平流金属有机化学气相沉积(MOCVD)真空反应腔的设计以及最终流场分布都进行了理论模拟。在选择优化喷管排布基础上,在衬底托盘、衬底四周底壁,以及衬底所在区域上壁临近区域范围加热,形成局部热壁外延真空反应腔体。此外,对于真空腔体设计,顶层与底层流动速度,都进行细致研究,确保在材料生长区域的壁面,反应前驱物源气体保持在稳定且无漩涡流动状态,并使反应物主要分布在衬底位置处,有效提高反应物利用率,并避免在腔壁等处发生反应,最后进行热壁MOCVD材料生长,得到厚度分布比较均匀,x射线双晶衍射的半峰全宽(FWHM)为149.8弧度秒,表明生长出质量良好的氮化镓(GaN)薄膜单晶材料。
Numeric simulation of the three-layer hot-wall metal-organic chemical vapor deposition(MOCVD) vacuum reactor was performed, including the design and the final flow field distribution. In this article, on the basis of the optimization array of the nozzles, the substrates susceptor, the near ceiling wall around the susceptor and the wall above the susceptor were all heated and the partial hot-wall reactor was formed. Furthermore, the design of the vacuum reactor, the flowing speed of the top layer and the bottom layer were all investigated in detail. As a result, we can ensure that in the material growth region, the precursors and the carrier gases were all kept in a stable flow states without swirls and the precursors were concentrated on the position of the substrates, which increased the utilization of the reactive materials effectively and the reaction on the other wall was reduced largely. At last, materials was grown in this hot-wall MOCVD reactor and the thickness of the film was averaged. The FWHM of XRD rocking curves for the wafer is 149.8 arcsecond, indicating that good materials quality was gained.
作者
李琳
李成明
杨功寿
胡西多
杨少延
苏宁
LI Lin;LI Cheng-ming;YANG Gong-shou;HU Xi-duo;YANG Shao-yan;SU Ning(Hunan Institute of Information Technology,Changsha 410151,China;Key Laboratory of Semiconductor Materials Science,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China;Dongguan Institute of Opto-Electronics Peking University,Dongguan 523808,China;School of Electronic Engineering,Dongguan University of Technology,Dongguan 523808,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;Shenyang Vacuum Technology Institute Co.,Ltd.,Shenyang 110042,China)
出处
《真空》
CAS
2019年第1期34-38,共5页
Vacuum
基金
国家重点研发计划(No.2017YFB0404201)
国家自然科学基金项目(Nos.61774147
61504128)
广东省省级科技项目
东莞市产学研合作项目
东莞市重大科技项目(项目编号:2013B090500004
2014509130207以及2014215130)
广东省财政补贴项目(粤财工【2015】639号)