期刊文献+

Synthesis of α-Fe_2O_3@SnO_2 core-shell nanoparticles via low-temperature molten salt reaction route 被引量:1

低温熔盐法制备α-Fe_2O_3@SnO_2核壳结构纳米颗粒(英文)
下载PDF
导出
摘要 A cost-effective carbon-free nanocoating strategy was developed for the synthesis of ultra-fine SnO2 coatingα-Fe2O3 core-shell nanoparticles. This strategy only involves a two-step molten salt reaction at low temperature of 300 °C. The as-preparedα-Fe2O3@SnO2 core-shell nanocomposites show enhanced electrochemical performances than the bareα-Fe2O3 nanoparticles. This involved metal oxide nanocoating method is easy to be carried out, and the heat treatment temperature is much lower than that of other traditional solid-state annealing method and many carbon or metal oxide nanocoating methods. The molten salt method may also be used to produce other metal oxides coating nanostructures as the electrode materials for lithium-ion batteries. 采用一种经济有效的非碳纳米包覆技术制备超细SnO_2颗粒包覆α-Fe_2O_3核壳形式的纳米结构材料。这种技术仅涉及两步低温(300℃)熔盐反应。相对于纯的α-Fe_2O_3纳米颗粒,所制备的α-Fe_2O_3@SnO_2纳米核壳颗粒显示出更好的电化学性能。金属氧化物纳米包覆的方法比较容易实施,其热处理温度远低于传统的固相烧结反应和其他碳或金属氧化物纳米包覆方法的热处理温度。这种新的熔盐反应包覆技术也可用于制备其他氧化物纳米包覆结构,并可将这些纳米复合结构材料用于锂离子电池电极材料。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3651-3656,共6页 中国有色金属学报(英文版)
基金 Projects(51202297,81372464,51472271)supported by the National Natural Science Foundation of China Project(NCET-12-0554)supported by the New Century Excellent Talents in University Project(2013CB932901)supported by the National Basic Research Program of China
关键词 nanometer materials lithium-ion batteries molten salt reaction energy materials nano-coating 纳米材料 锂离子电池 熔盐反应 能源材料 纳米包覆
  • 相关文献

参考文献5

二级参考文献59

  • 1阮艳莉,唐致远.Mg^(2+)掺杂对LiFePO_4结构及电化学性能的影响[J].中国有色金属学报,2005,15(9):1416-1420. 被引量:6
  • 2禹筱元,胡国荣,彭忠东,肖劲,刘业翔.Synthesis and electrochemical characterization of layered Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 cathode materialfor Li-ion batteries[J].中国有色金属学会会刊:英文版,2005,15(6):1425-1428. 被引量:3
  • 3SHIM J, KOSTECKI R, RICHARDSON T, SONG X, STRIEBEL K.Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature [J]. Journal of Power Sources, 2002, 112(1): 222-230.
  • 4BELHAROVAK I, SUN Y K, LIV J, AMINE K. Li(NiI/3CoI/3MnI/3)02 as a suitable cathode for high power applications [J]. Journal of Power Sources, 2003, 123(2): 247-252.
  • 5YABUUCHI N, OHZUKV T. Novel lithium insertion material of LiCol/3Nil/3Mnl/302 for advanced lithium-ion batteries [J]. Journal of Power Sources, 2003,119: 171-174.
  • 6CHO J, KIM T J, KIM J, NOH M, PARK B. Synthesis, thermal, and electrochemical properties of Alf'Oa-coated LiNio.8CoO.1Mno.102 cathode materials for a Li-ion cell [J]. Journal of The Electrochemical Society, 2004,151(11): AI899-AI904.
  • 7KIM M H, SHIN H S, SHIN D, SUN Y K. Synthesis and electrochemical properties of Li[Nio8CoO.1Mno.l]02 and Li[Nio.sCoo.2]02 via co-precipitation [J]. Journal of Power Sources, 2006, 159(2): 1328-1333.
  • 8NOH H J, YOUN S, YOON C S, SUN Y K. Comparison of the structural and electrochemical properties oflayered Li[NixCoyMnz]02 (x=1I3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries [J]. Journal of Power Sources, 2013, 233: 121-130.
  • 9SUN Bin, SHEN Guo-pei, HU Yan-long. High-rate capability of spinel LiNio. OSMnl.9S04 cathode for Li-ion batteries prepared via coprecipitated precursor [J]. Transactions of Nonferrous Metals Society of China, 2007, 17(SI): s937-s940.
  • 10LI Ling-jun, LI Xin-hai, WANG Zhi-xing, WU Ling, ZHENG Jun-chao, LI Jin-hui. Synthesis of LiNio.8COo.1MnO.102 cathode material by chloride co-precipitation method [J]. Transactions of Nonferrous Metals Society of China, 2010, 20(SI): s279-s282.

共引文献5

同被引文献25

  • 1YOO S G,KIM J H,KIM U H,et al.Comparison of the kinetic behaviors ofα-Fe2O3spherical submicron clusters andα-Fe2O3fine powder catalysts for CO oxidation[J].Bulletin of the Korean Chemical Society,2014,35(5):1379-1384.
  • 2AHMED K A M.Formationα-Fe2O3nanowalls through solvent-assisted hydrothermal process and their application for titan yellow GR dye degradation[J].Journal of the Korean Chemical Society,2014,58(2):205-209.
  • 3KUMAR P,RAWAT N,HANG D R,et al.Controlling band gap and refractive index in dopant-freeα-Fe2O3Films[J].Electronic Materials Letters,2015,11(1):13023.
  • 4SOOK K I.Effects of hydrophilic and hydrophobic surface properties of poly(imide)films on particle adhesion and removal[J].Textile Science and Engineering,2015,52(4):232-241.
  • 5BOUMAZA S,BOUDJEMAA A,BOUGUELIA A,et al.Semiconductor-based photocatalytic hydrogen generation[J].Applied Energy,2010,87(10):2230-2236.
  • 6YUAN Z H,ZHANG L D.Synthesis,characterization,and photocatalytic activity of Zn Fe2O4/Ti O2nanocomposite[J].Journal of Materials Chemistry,2001,11(8):1265-1268.
  • 7LIU X S,LIU X Y,LI G Q,et al.Enhancement of photogenerated charges separation inα-Fe2O3modied by Zn2Sn O4[J].Journal of Physics D:Applied Physics,2009,42(24):245405.
  • 8LIU X Y,ZHENG H W,ZHANG Z L,et al.Effect of energy level matching on the enhancement of photovoltaic response about oxide/Zn2Sn O4composites[J].Journal of Materials Chemistry,2011,21(12):4108-4116.
  • 9LIU X Y,LIU J,ZHENG H W,et al.Separation mechanism of photogenerated charges for p-typeα-Bi2O3nanoparticles with surface states[J].Applied Surface Science,2012,10(258):4240-4245.
  • 10ZHENG H W,LIU X Y,DIAO C L,et al.A separation mechanism of photogenerated charges and magnetic properties for Bi Fe O3microspheres synthesized by a facile hydrothermal method[J].Physical Chemistry Chemical Physics,2012,14(23):8376-8381.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部