期刊文献+

三伪币问题的最优搜索(英文) 被引量:2

Optimal Search of Three Counterfeit Coins Problem
下载PDF
导出
摘要 证明了对于所有整数n来说 ,三伪币问题的最小试验次数或等于信息论下界或超过信息论下界 1次。并对于无穷多个区间来说信息论下界均是可以达到的 。 It is proved that the minimum number of tests of three counterfeit coins problem is either equal to the information-theoretic bound, or exceeds it by 1. Moreover, the information-theoretic bounds are achievable for infinitely many intervals, thus Tosic results are greatly improved.
出处 《工程数学学报》 CSCD 北大核心 2004年第1期114-118,113,共6页 Chinese Journal of Engineering Mathematics
基金 ThisworkissupportedbytheNationalNaturalScienceFoundationofChina(6 9874 0 1 0 )
关键词 搜索 序列算法 信息论下界 伪币问题 search sequential algorithm information-theoretic bound counterfeit coins problem
  • 相关文献

参考文献9

  • 1[1]Aigner M. Combinatorial Search[M].New York: Wiley-Teuber,1988
  • 2[2]Du D Z, Hwang F K. Combinatorial Group Testing and its Applications[M]. World Scientific, Singapore,2000
  • 3[3]Bonis A De. A predetermined algorithm for detecting a counterfeit coin with a multi-arms balance[J]. Discrete Appl Math,1998;86:181-200
  • 4[4]Bonis A De, Gargano L, Vaccaro U. Optimal detection of a counterfeit coin with multi-arms balances[J]. Discrete Appl Math, 1995;61:121-131
  • 5[5]Guy P K, Nowakowski R J. Coin-weighing problems[J]. Amer Math Monthly, 1995;102:164-167
  • 6[6]Li A P. On the conjecture at two counterfeit coins[J]. Discrete Math,1994;133:301-306
  • 7[7]Liu W A, Nie Z K. Optimal detection of two counterfeit coins with two-arms balance[J]. Discrete Appl Math, to appear
  • 8[8]Tosic R. Three counterfeit coins[J]. Rev Res Sci Univ Novi Sad, 1985;15:225-233
  • 9[9]Tosic R. Five counterfeit coins[J]. J Statist Plann Inference, 1989;22:197-202

同被引文献14

  • 1肖新攀.两类“称球问题”的统一非序列解[J].湘潭大学自然科学学报,2006,28(2):28-32. 被引量:2
  • 2肖新攀.多伪币问题的非适应解[J].南京大学学报(自然科学版),2006,42(5):506-511. 被引量:1
  • 3L. Pyber.How to find many counterfeit coins?[J]. Graphs and Combinatorics . 1986 (1)
  • 4DYSON F J.The problem of the pennies. The Mathematical Gazette . 1946
  • 5AIGNER M.Combinatorial search. . 1988
  • 6BO■NJAK I.A new algorithm for the four counterfeit coins problem. Novi Sad J Math . 2002
  • 7LIU Wen-an,ZHANG Wei-guo,NIE Zan-kan.Searching for two counterfeit coins with two-arms balance. Disorete Appl.Math . 2005
  • 8BORN A,,HURKENS C A J,WOEGINGER G J.How to detect a counterfeit coin:Adaptive versus non-adaptive solutions. Information Processing Letters . 2003
  • 9Bellman R,Gluss B.On various versions of the defective coin problem. Information and Control . 1961
  • 10Bonis A D,Gargano L,Vaccaro U.Optimal detection of a counterfeit coin with multi-arms balances. Discrete Applied Mathematics . 1995

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部