期刊文献+

求解三种导体构形中相对论电子形成的空间电荷限制流 被引量:8

Solution to space-charge-limited flow in three relativistic configurations
下载PDF
导出
摘要  从Poisson方程及空间电荷限制流假设出发,推导了三种导体构形中相对论电子形成的空间电荷流密度的一般方程,给出了求解方法及解的基本特征、平板形阳极空间电荷限制流的具体表达式,研究了同轴圆筒形及共顶点同轴圆锥形导体空间电荷限制流关系表达式的极性效应、空间电荷密度及电场分布。 A generalized equation, which governs space charge current flow in three relativistic configurations, was derived from Poisson's equation with assumption of space-charge-limited flow. A method for solution to the equation was introduced and the characteristic of solution for the three configurations was discussed as well. It was found that the expressions of space-charge-limited flow for both the common-vertex-coaxial-circular-cones and coaxial cylindrical conductors have polarity effect, which results in different distribution of space charge and electrical stress from that of planar case.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2004年第3期404-408,共5页 High Power Laser and Particle Beams
基金 国防科技基础研究基金资助课题
关键词 空间电荷限制流 平板形 同轴圆筒 共顶点同轴圆锥 极性效应 Space-charge-limited flow Planar conductor Coaxial cylindrical conductor Common-vertex-coaxial-circular-cones conductor Polarity effect
  • 相关文献

参考文献6

  • 1宋盛义,冯晓晖,周之奎,谢卫平,孙承纬.共顶点同轴圆锥形及圆盘形传输线的电参数计算公式[J].强激光与粒子束,2004,16(2):256-260. 被引量:14
  • 2Creedon J M. Magnetic cutoff in high-current diodes[J].J Appl Phys, 1977, 48(3): 1070-1077.
  • 3Bergeron K D, Poukey J W. Relativistic space-charge flow in a magnetic field[J]. Appl Phys Lett, 1975, 27(2): 58-60.
  • 4Boers J E, Kelleher D. Exact solution of Poisson's equation for space-charge-limited flow in a relativistic planar diode[J]. J Appl Phys,1969, 40.2409-2412.
  • 5Mesyats G A. Proskurovsky D I. Pulsed electrical discharge in vacuum. New York: Spring-Verlag,1989.
  • 6Capua M S D. Magnetic Insulation[J]. IEEE Transaction on Plasma Science,1983,11(3):205-215.

二级参考文献6

  • 1Bloomquist D D, Stinnett R W, McDaniel D H, et al. Saturn, a large area X-ray simulation accelerator[A]. Proc 6 th IEEE Int Pulsed Power Conf[C]. 1987. 310-317.
  • 2Spielman R B, Long F, Martin T H, et al. PBFA II-Z: a 20-MA driver for Z-pinch experiments[A]. Proc 10 th IEEE Int Pulsed Power Conf[C]. 1995. 396--404.
  • 3Spielman R B, Stygar W A, Seaman J F, et al. Pulsed power performance of PBFA Z[A]. Proc 11 th IEEE Int Pulsed Power Conf[C].1997. 709-714.
  • 4Ives H C, Van De Vade D M, Long F W, et al. Engineering design of the Z magnetically insulated transmission lines[A]. Proe 11th IEEE Int Pulsed Power Conf[C]. 1997. 1602-1607.
  • 5Stygar W A, Spielman R B, Allshouse G O, et al. Design and performance of the Z magnetically insulated transmission lines[A]. Proc 11th IEEE Int Pulsed Power Conf[C]. 1997. 591-596.
  • 6Corcoran P A, Douglas J W, Smith I D, et al. PBFA Z vacuum section design using TL code simulations[A]. Proc 11th IEEE Int Pulsed PowerConf[C]. 1997. 466-473.

共引文献14

同被引文献39

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部