期刊文献+

多复变数完全拟凸映射的分解定理

DECOMPOSITION THEOREM OF COMPLETE QUASICONVEX MAPPINGS IN C^n
下载PDF
导出
摘要 设Ω_1C^(n1),Ω_2C^(n2)为凸的Reinhardt域,f(z,w)=(f1(z,w),f2(z,w))'为Ω_1×Ω_2上的正规化全纯映射.本文证明f为Ω_1×Ω_2上的正规化双全纯完全拟凸映射当且仅当 f(z,w)=(Φ_1(z),Φ_2(w))'其中φj:Ωj→C^(nj)是Ωj(j=1,2)上的正规化双全纯完全拟凸映射。 Let Cn1,Ω2 C Cn2 be bounded convex Reinhardt domains, f(z,w) = (f1(z,w), f2(z, w))' is a normalized holomorphic mapping on Ω1×Ω)2. Then f is a normalized biholomorphic complete quasiconvex mapping on Ω1×Ω2 if and only if f(z,w) = (φ1 (z),φ2(w))', where φj:Ωj -Cnj is a normalized biholomorphic complete quasiconvex mapping on Ωj (j=1,2).
作者 刘浩 卢克平
出处 《数学年刊(A辑)》 CSCD 北大核心 2004年第1期13-20,共8页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10271117) 河南省教委自然科学基金 高校骨干教师基金
关键词 REINHARDT域 完全拟凸映射 分解定理 Reinhardt domains, Complete quasiconvex mappings, Decomposition theorem
  • 相关文献

参考文献11

  • 1[1]Goluzin, G. M., Geometric Theory of Functions of a Complex Variable [M], Trans.Math. Monographs, Vol.26, Amer. Math. Soc., Providence, R. I., 1969.
  • 2[2]Gong, S., Convex and Starlike Mappings in Several Complex Variables [M], Kluwer Acadence Publishers, 1998.
  • 3[3]Gong, S., The Bieberbach Conjecture [M], International Press Company, 1998.
  • 4[4]Kikuchi, K., Starlike and convex mappings in several complex variables [J], Pacific J.of Math., 44(1970), 569-580.
  • 5[5]Thomas, C. R., Extensions of classical results in one complex variable to several complex variables [D], University of california, San Diego Doctor Dissertation, 1991.
  • 6[6]Liu, T. S. & Zheng, W. J., Complete quasiconvex mappings in several complex variables[R], preprint, 2001.
  • 7[7]Liu, T. S. & Ren, G. B., Decomposition theorem of normalized biholomorphic convex mappings [J], J. Reine. Angew. Math., 496(1998), 1-13.
  • 8[8]Liu, T. S. & Liu, H., The quasiconvex mappings on bounded convex circular domains[J], Acta Math sinica, 44 (2001), 287 292 (in Chinese).
  • 9[9]Suffridge, T. J., The principle of subordination applied to functionof several variables[J], Pacific J. of Math., 33(1970), 241 248.
  • 10[10]Suffridge, T. J., Starlikness, convexity and other geometric properties of holomorphic mappings in higher dimensions [J], Lecture Notes in Math.,599(1976), 146 159.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部