摘要
本文以木兰溪下游裁弯河段为例,建立了有限体积法的水平二维非恒定流均匀沙不平衡输移计算模型。采用黎曼近似解通量差分裂(FDS)格式计算通过各单元边的水流、含沙量法向数值通量,并应用相关的悬移质、推移质河床变形计算公式计算冲淤变化。数值模型经相应的河工模型试验资料率定、检验后,预测了裁弯工程建成后河道可能的冲淤变化,为工程设计和施工提供依据。
A depth-averaged two-dimensional unsteady flow with uniform non-equilibrium sediment transport model is proposed to simulate the riverbed deformation in a tidal river. The equation system in the model is discretized by finite volume method (FVM). The flux difference splitting (FDS) algorithm, an approximate Riemann solver, is employed to estimate the normal fluxes across the interface of cells. The sediment concentration is obtained simultaneously with the flow part. Sediment conservation law determines the bed variations caused by suspended load and/or bed-load. The model has been verified by experiments conducted in a movable-bed physical model. The comparison between simulated results and experimental measurements shows good agreement. Model has been applied to a cutoff plan for the meandering tidal river Mulan.
出处
《水动力学研究与进展(A辑)》
CSCD
北大核心
2004年第1期98-103,共6页
Chinese Journal of Hydrodynamics
关键词
有限体积法
黎曼近似解
浅水方程
无结构网格
悬移质
推移质
含沙量
河床变形
finite volume method
approximate Riemann solver
shallow water equations
2D non-equilibrium sediment transport equation
unstructured grid
uspended load
bed-load