期刊文献+

基于连续小波变换的电能质量测量与分类 被引量:12

Continuous wavelet-based measuring and classification of short duration power quality disturbances
下载PDF
导出
摘要 提出了用连续小波变换CWT(ContinuousWaveletTransform)实现对短时电能质量SDPQD(ShortDurationPowerQualityDisturbances)检测与分类的新方法。该方法弥补了离散小波难以对谐波精确检测的缺点,通过计算小波系数的能量分布曲线,有效地区分出谐波(可以同时存在多种,包括分数次谐波)、暂态振荡、暂态脉冲、电压凹陷、电压凸起及电压间断等各种扰动,并能实现扰动的各项指标测定。在测定电压扰动幅度方面,提出了使用基于小波变换系数的电压扰动幅度确定法则。仿真结果表明,该方法对电能质量各种扰动分类有效,特别是对谐波检测及电压扰动幅度定位准确、快速,是一种综合性强、实用性好的检测方法。 A CWT(Continuous Wavelet Transform) - based method for measuring and classifying SDPQD(Short Duration Power Quality Disturbances)is introduced.By counting the energy distribution curve of CWT coefficient,it effectively classifies(where there can be many kinds or non - integer),transient oscillation,transient interruption,voltage sag,voltage swell and voltage interruption,which cannot be classified accurately by DWT because of harmonic.And it can detect all the indexes of power quality.The CWT coefficient - based law is introduced for detecting voltage disturbance range.Simulation results show that the proposed method is effective in the classification of SDPQD,especially in the detection of harmonics and voltage disturbance range.It is an inclusive and useful method.
出处 《电力自动化设备》 EI CSCD 北大核心 2004年第3期17-21,共5页 Electric Power Automation Equipment
关键词 电能质量 连续小波变换 能量分布曲线 SDPQD CWT energy distribution curve
  • 相关文献

参考文献7

二级参考文献28

  • 1[1]Angrisani L, Daponte P, Apuzzo M D. A measument method based on the wavelet transform for power quality analysis[J]. IEEE Trans Power Delivery, 1998, 13(4):990-998.
  • 2[2]Huang S J, et al. Application of morlet wavelets to supervise power system disturbances[J]. IEEE Trans Power Delivery, 1999, 14(1):235-243.
  • 3[3]Gaouda A M,et al. Power quality detection and classification using wavelet-multiresolution signal decomposition[J].IEEE Trans. Power Delivery, 1998, 14(4):1469-1476.
  • 4[4]Application of multiresolution signal decomposition for monitoring short-duration variations in distribution systems[J]. IEEE Trans Power Delivery, 2000, 15(2):478-485.
  • 5[5]Santoso S, Powers E J, et al. Power quality disturbance waveform recognition using wavelet-based neural classifier?Part 1: theoretical foundation, Part 2: application[J]. IEEE Trans Power Delivery, 2000, 15(1):222-235.
  • 6[6]Poisson O, Rioual P, Meunier M. Detection and measurement of power quality disturbances using wavelet transform[J].IEEE Trans Power Delivery, 2000, 15(3):1039-1044.
  • 7[7]Karimi M, Mokhtari H, Iravani R. Wavelet based on-Line disturbance detection for power quality applications[J]. IEEE Trans Power Delivery, 2000, 15(4):1212-1220.
  • 8[8]Vetterli M, Herley C, Wavelets and filter banks: theory and design[J]. IEEE Trans Signal Process, 1992, 40(9):2207-2232.
  • 9[9]Sweldens W. The Liftinging scheme: a custom-design construction of biorthogonal wavelets[J]. J. Appl. and Comput. Harmonic Analysis, 1996, 3(2):186-200.
  • 10[10]Daubechies I. Ten lectures on wavelets[M]. CBMS-NSF Regional Conf. series in Appl. Math., Philadelphia, PA, 1992, 61:277.

共引文献347

同被引文献138

引证文献12

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部