摘要
Superperiodic feature was observed by scanning tunneling microscopy (STM) on the surface of highly oriented pyrolytic graphite (HOPG) on which silicon was sputtered. The superlattice was analyzed by the moire pattern hypothesis, and the lattice constant is 7.03 nm. For the superlattice, the observed boundaries between the superlattice and the normal graphite areas were zigzag, which was in good agreement with the result predicted theoretically. In addition, the observed lattice constants varied slightly in the superperiodic feature area. This implies the role of intralayer strain in the formation of the observed superlattice on the graphite surface.
Superperiodic feature was observed by scanning tunneling microscopy (STM) on the surface of highly oriented pyrolytic graphite (HOPG) on which silicon was sputtered. The superlattice was analyzed by the moire pattern hypothesis, and the lattice constant is 7.03 nm. For the superlattice, the observed boundaries between the superlattice and the normal graphite areas were zigzag, which was in good agreement with the result predicted theoretically. In addition, the observed lattice constants varied slightly in the superperiodic feature area. This implies the role of intralayer strain in the formation of the observed superlattice on the graphite surface.
基金
The authors thank the National Natural Science Foundation of China for support by two grants:No.50025204 and No.59895156.