期刊文献+

纵向数据分析方法 被引量:45

A Review on Longitudinal Data Analysis Method and It's Development
下载PDF
导出
摘要 纵向研究方法是心理学研究领域的一种重要方法。近年来,国外在纵向研究数据分析方法上取得了一系列理论和应用上的进展。文章对此方法进行了简要的回顾,并重点阐述了最近发展起来的纵向研究的方法:多层线性模型和潜变量增长曲线模型,并在此基础上对几种常用的方法进行了比较。 :Longitudinal method is one of the central topics in psychology. A series of theoretical and application advances have been made recently. In this article, these advances are reviewed briefly and overlapping Hierarchical Linear Model(HLM) and Latent Growth Curve Model(LGM) are mainly discussed. In addition, the difference of several longitudinal methods are discussed briefly.
出处 《心理科学进展》 CSSCI CSCD 北大核心 2003年第5期586-592,共7页 Advances in Psychological Science
关键词 纵向研究 多层线性模型 潜变量增长曲线模型 心理学 研究方法 纵向数据分析方法 Longitudinal research, Hierarchical Linear Model, Latent Growth Curve Model.
  • 相关文献

参考文献13

  • 1[1]Duncan T E, Duncan S C, Strycker L A. An Introduction to Latent Variable Growth Curve Modeling: Concepts, Issues, and Applications. New Jersey, London: Lawernce Erlbaum Associates, 1999. 12~65
  • 2[2]Raudenbush S W, Chan W. Growth curve analysis in accelerated longitudinal designs. Journal of Research in Crime and Delinquency, 1992, 29: 387~411
  • 3[3]J?reskog K G, S?rbom D. Lisrel 8: Structural Equation Modeling with the SIMPLIS command language. Chicago: Scientific Software International, 1993. 12~145
  • 4[4]Liang K Y, Zeger S L. Longitudinal data analysis using generalized linear models. Biometrika, 1986, 73: 13~22
  • 5[5]Arbuckle J L. AMOS for windows, analysis of moment structures Version 3.5. Chicago IL: Smallwaters, 1995. 25~75
  • 6[6]Bentler P M, Wu E. EQS structural equations program manual. Encino,CA: Multivariate software, 1995. 1~10
  • 7[7]Múthen B, Múthen J.Mplus user's guide: http://www.statmodel.com/Mplus Mplus Version 2.1.
  • 8[8]Bryk A S, Raudenbush S W. Hierarchical Linear Models: Applications and Data Analysis Methods. Newbury Park,CA: Sage Publication, 1992. 12~52
  • 9[9]Rasbash J, Browne W, Goldstein H, Yang M, Plewis I, Healy M, Woosdouse G, Draper D. A user's guide to Mlwin. London: Institute of Education, 1999. 1~225
  • 10[10]Longford N T. A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested effects. Biometrika, 1987,74: 817~827

同被引文献695

引证文献45

二级引证文献434

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部