期刊文献+

移动小车的有限时间轨迹跟踪控制 被引量:14

Trajectory tracking control of mobile robots in finite time
下载PDF
导出
摘要 讨论了基于运动学模型的移动小车的轨迹跟踪控制问题 .利用有限时间控制技术 ,提出了一种连续的状态反馈跟踪控制律 ,使得对角速度不为 0的期望轨迹 ,移动小车能够在有限时间内完全跟踪上期望轨迹 .而且提出的跟踪控制律不存在奇异点 . The trajectory tracking control problem of the kinematic model of a mobile robot is discussed. Using finite time control technique, a continuous state feedback control law for trajectory tracking is developed. The proposed control law can guarantee that the mobile robot will track the desired trajectory in finite time when the desired rotation velocity is nonzero. Furthermore, the proposed tracking control law has no singular points. Simulation results are provided to demonstrate the effectiveness of our method.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第1期113-116,共4页 Journal of Southeast University:Natural Science Edition
关键词 移动小车 轨迹跟踪 有限时间 mobile robot trajectory tracking finite time
  • 相关文献

参考文献10

  • 1[1]Kolmanovsky H, McClamroch N H. Developments in nonholonomic control systems [J]. IEEE Control Syst Magazine, 1995, 15(6): 20-36.
  • 2[2]Kanayama Y, Kimura Y, Miyazaki F, et al. A stable tracking control method for an autonomous mobile robot [A]. In: Proc of IEEE Inter Conf on Robotics and Automation [C]. Cincinnati: IEEE Computer Society Press, 1990. 384389.
  • 3[3]Fierro R, Lewis F L. Control of a nonholonomic mobile robot: backstepping kinematic into dynamics [A]. In: Proc 33rd IEEE Conf Decision Control[C]. Piscataway: IEEE Press, 1994. 3475-3480.
  • 4[4]Fliess M, Levine J, Martin P, et al. Flatness and defect of nonlinear systems: introductory theory and examples [J]. Int J of Control, 1995, 61: 1327-1361.
  • 5[5]Fliess M, Levine J, Martin P, et al. Design of trajectory stabilizing feedback for driftless flat systems [A]. In: Proc 3rd European Control Conf [C]. Rome: Eur Union Control Assoc, 1995. 1882-1887.
  • 6[8]Jiang Z P, Nijmeijer H. Tracking control of mobile robots: a case study in backstepping [J]. Automatica, 1997, 33(7): 1393-1399.
  • 7[11]Yu X H, Man Z H. Multi-input uncertain linear systems with terminal sliding-mode control [J]. Automatica, 1998, 34(3): 389-392.
  • 8[12]Bhat S P, Bernstein D S. Finite time stability of homogeneous systems [A]. In: American Control Conference[C]. Evanston: American Autom Control Council, 1997. 2513-2514.
  • 9[13]Haimo V T. Finite time controllers [J]. SIAM J Control and Optimization, 1986, 24(4): 760-770.
  • 10[14]Hong Y. Finite-time stabilization and stabilizability of a class of controllable systems [J]. Systems and Control Letters, 2002, 46(4): 231-236.

同被引文献137

引证文献14

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部