期刊文献+

一种实数编码的自适应遗传算法及其在热工过程辨识中的应用研究 被引量:12

A REAL-CODED ADAPTIVE GENETIC ALGORITHM AND ITS APPLICATION RESEARCH IN THERMAL PROCESS IDENTIFICATION
下载PDF
导出
摘要 该文针对传统的遗传算法(GA)难以解决的早熟和局部收敛问题,分析了传统的GA编码策略、选择策略、交叉变异策略和交叉变异概率选择等环节存在的不足,提出一种实数编码、多种算子互相补充和交叉变异概率自适应选择的改进算法。用~个非常复杂的数学函数对新算法进行了测试,结果表明改进算法较之传统GA有效地提高了全局寻优能力。在此基础上将这种改进算法应用于热工过程辨识进行仿真研究,结果表明该方法是有效的,具有一定的应用价值,并且文中所提出的算法和策略具有一般性,很容易运用于其它优化问题。 Aiming at the problem that the traditional genetic algorithm(GA) is difficult to deal with premature and local convergence, this paper analyses the shortage of the traditional GA's primary strategy, including coding strategy, selecting strategy, crossover and mutation strategy, and selection strategy of crossover and mutation probability. An improved algorithm is proposed that adopts real coding, multi-operators cooperation and adaptive selection of crossover and mutation probability. New algorithm is tested with a complex mathematics function. The experimental results show that the improved method has better ability to converge to the global optimum than the traditional GA. The improved algorithm is applied to simulation research for thermal process identification. The results show the approach is valid. Moreover the algorithm and strategy discussed in the paper has general sense and can be applied to many other problems.
作者 张世华 雎刚
出处 《中国电机工程学报》 EI CSCD 北大核心 2004年第2期210-214,共5页 Proceedings of the CSEE
关键词 热工过程 辨识 实数编码 自适应遗传算法 随机并行搜索算法 Thermal process Genetic algorithm Real coding Adaptive System identification
  • 相关文献

参考文献1

二级参考文献8

  • 1陈来九(Chen Laijiu).热工过程自动调节原理和应用(The theory and applications o f thermal process automation)[R]. 东南大学动力系资料(Data of Southeast Universit y Dept. of Power Engineering),1997,296-300.
  • 2Arabs J,Michalewicz Z,Mulawake J. GAVAPS-a genetic algorithms with varying population size[R]. The First IEEE Conference on Evolutionary Compution,Orland o,Florida,1994.
  • 3Srinivas M,Patnail L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Trans. Syst. ,Man, and Cybern. , 1994,24(4):656-6 67.
  • 4Hesser J,Manner R. Towards an optimal mutation probability for genetic algo rithms[R]. Proc 1st Conf on PPSN. 1990 .
  • 5Hajela P,Lin C L. Genetic search strategies in multicritrion optimal des ign[J]. Struct Optimization,1992,(4):99-107.
  • 6刘镇,姜学智,李东海.PID 控制器参数整定方法综述[J].电力系统自动化,1997,21(8):79-83. 被引量:58
  • 7曹一家,程时杰.进化算法在工程应用中的若干实用技术[J].电力系统自动化,2001,25(1):62-65. 被引量:7
  • 8石立宝,徐国禹.一种求解电网多目标模糊优化运行的自适应进化规划算法[J].中国电机工程学报,2001,21(3):53-57. 被引量:30

共引文献101

同被引文献110

引证文献12

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部