期刊文献+

Photo-induced Coupling Reaction of 1,1-Diphenyl-2,2-dicyanoethylene with 10-Methyl-9,10-dihydroacridine

Photo-induced Coupling Reaction of 1,1-Diphenyl-2,2-dicyanoethylene with 10-Methyl-9,10-dihydroacridine
下载PDF
导出
摘要 Diphenyl-2, 2-dicyanoethylene reacts with 10-methyl-9, 10-dihydroacridine in deaerated acetonitrile under irradiation with l>320 nm to give the coupling product 1, 1-diphenyl-1-(10-methyl-9-acridinyl)-2, 2-dicyanoethane, which has been characterized by X-ray crystallographic, MS and NMR analyses.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第2期159-162,共4页 中国化学快报(英文版)
关键词 Photo-induced coupling reaction 1 1-diphenyl-2 2-dicyanoethylene 10-methyl-9 10-dihydroacridine 1 1-diphenyl-1-(10-methyl-9-acridinyl)-2 2-dicyanoethane. Photo-induced coupling reaction, 1, 1-diphenyl-2, 2-dicyanoethylene, 10-methyl-9, 10-dihydroacridine, 1, 1-diphenyl-1-(10-methyl-9-acridinyl)-2, 2-dicyanoethane.
  • 相关文献

参考文献9

  • 1[1]H. Jiang, Y. C. Liu, J. Li, G. W. Wang, Y. D. Wu, Q. M. Wang, T. C. W. Mak, J. Chem. Soc., Chem. Commun., 2002, 882.
  • 2[2]M. Fujita, A. Ishida, S. Takamuku, S. Fukuzumi, J. Am. Chem. Soc., 1996, 118, 8566.
  • 3[3](a) Y. Kim, D. G. Truhlar, M. M. Kreevoy, J. Am. Chem. Soc., 1991, 113, 7837.(b) o. Almarsson, A. Sinha, E. Gopinath, T. C. Bruice, J. Am. Chem. Soc., 1993, 115, 7093.(c) L. P. Olson, T. C. Bruice, Biochemistry, 1995, 34, 7335.(d) Y. D. Wu, D. K. W. Lai, K. N. Houk, J. Am. Chem. Soc., 1995, 117, 4100.(e) A. J. Ohno, J. Phys. Org. Chem., 1995, 8, 567.(f) Y. C. Liu, B. Li, Q. X. Guo, Tetrahedron, 1995, 51, 9671.(g) J. P. Cheng, Y. Lu, X. Q. Zhu, L. J. Mu, J. Org. Chem., 1998, 63, 6108.
  • 4[4]Crystal data for 3: C30H23N3, Mr = 425.51, monoclinic, P21/n, a = 11.8806(11), b = 14.1864(14), c = 13.6027(13)A, β = 97.721(2)°, V = 2271.9(4) A3, Z = 4, μ = 0.074 mm-1, θ-range 2.08-28.04°, 5474 independent reflections, refinement on F2 for 299 parameters, wR (F2, all refl.) = 0.136, R1[2281 obs. refl. with I > 2σ(I)] = 0.044.
  • 5[5]M. J. S. Dewar, W. Thiel, J. Am. Chem. Soc., 1977, 99, 4907.
  • 6[6]Selected spectral data for 3. 1H NMR (500 MHz, C6D6): δppm 7.79 (m, 2H, H-22, H-30), 7.72 (m, 2H, H-24, H-28), 7.18 (m, 2H, H-4, H-6), 7.16 (m, 2H, H-23, H-29), 6.92 (m, 2H, H-21, H-31), 6.63 (m, 2H, H-2, H-8), 6.59 (m, 2H, H-3, H-7), 6.32 (m, 2H, H-25, H-27), 6.16 (m, 2H, H-1, H-9), 5.51 (s, 1H, H-5), 4.34 (s, 1H, H-17), 1.97 (s, 3H, H-15); 13C NMR (125 MHz, C6D6): (ppm 144.66 (C-11, C-14), 137.68 (C-20, C-26), 131.69 (C-24, C-28), 131.15 (C-4, C-6), 129.79 (C-22, C-30), 129.17 (C-23, C-29), 126.50 (C-2, C-8), 121.41 (C-21, C-31), 120.71 (C-3, C-7), 119.72 (C-12, C-13), 114.21 (C-18, C-19), 113.33 (C-25, C-27), 112.83 (C-1, C-9), 60.41 (C-16), 47.92 (C-5), 34.88 (C-17), 32.88 (C-15). The signals of the 1H NMR and 13C NMR spectra were assigned on the basis of 1H-1H COSY, 1H-13C COSY.
  • 7[7]S. Fukuzumi, M. Ishikawa, T. Tanaka, J. Chem. Soc. Perkin Trans.Ⅱ, 1989, 1037.
  • 8[8]The reduction potentials were determined by cyclic voltammetry measurements, which were performed at 50 mV/s on CV-27 Voltammograph at 298 K in acetonitrile containing 0.1 mol/L Bu4NClO4 as a supporting electrolyte using Ag/AgCl electrode as a reference electrode.
  • 9[9]Absolute energetics, optimized geometries, and harmonic vibrational frequencies were computed using density functional theory B3LYP. The 6-31G** and 6-311++G** basis sets were used for the geometry optimization and single point energy calculations, respectively.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部