期刊文献+

THE LONG-TIME BEHAVIOR OF SPECTRAL APPROXIMATE FOR KLEIN-GORDON-SCHROEDINGER EQUATIONS 被引量:1

原文传递
导出
摘要 Klein-Gordon-Schroedinger (KGS) equations are very important in physics. Some papers studied their well-posedness and numerical solution [1-4], and another works investigated the existence of global attractor in R^n and Ω包含于R^n (n≤3) [5-6,11-12]. In this paper, we discuss the dynamical behavior when we apply spectral method to find numerical approximation for periodic initial value problem of KGS equations. It includes the existence of approximate attractor AN, the upper semi-continuity on A which is a global attractor of initial problem and the upper bounds of Hausdorff and fractal dimensions for A and AN,etc.
作者 Xin-minXiang
出处 《Journal of Computational Mathematics》 SCIE CSCD 2004年第1期89-100,共12页 计算数学(英文)
  • 相关文献

参考文献12

  • 1Guo Boling, The global solutions of some problems for a system of equations of SchrSdinger-KleinGordon field., Scientia Sinica, Set. A, 9 (1982), 897-910.
  • 2I.Fukuda & M.Tsutsumi, On Klein-Gordon-SchrSdinger equations Ⅲ, Math Japan, 24 (1979),307-321.
  • 3Xiang Xinmin, Spectral method for solving the system of equations of Schr6dinger-Klein-Gordon field., J. Gorapu. & Appl. Math., 21 (1988), 161-171.
  • 4Guo Boling & Mial Changxing, Asymptotic behavior of conpled Klein-Gordon-Schr6dinger equations, Sci. China, Set A, 7 (1995), 705-714.
  • 5Kenming Lu & Bixiang Wang, Global attactors for the Klein-Gordon-SchrSdinger equations in unbounded domains, J. Diff. Equa., 170 (2001), 281-316.
  • 6B.Guo & Y.Li, Attractors for Klein-Gordon-SchrSdinger equations in R3, J. Diff. Equa., 136(1997), 356-377.
  • 7C.Canuto & A.Quarteroni, Approximation result for orthogonal polynomials in Sobolev spaces,Math Comput., 157 (1982), 67-86.
  • 8R.Temam, Infinite-dimensional dynamical systems in mechanics and physics, 2nd ed, SpringerVerlag, 1997.
  • 9J.M Ghidaglia, Finite dimensional behavior for weakly damped driven SchrSdinger equations, Ann.Institut H.Poincarg, Analyse Nonlindairer, 5 (1988) 365-405.
  • 10J.Lorenz, Numerics of invariant manifolds and attractors, Comtemporaray Math., 172 (1994),185-202.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部