摘要
本文从能量最省的角度应用极大值原理对空间飞行器采用有限推力同平面轨道转移的情况进行了分析和研究,得到了最优转移轨道及最优控制的求解条件。为了减少在解决两点边值问题时因伴随变量带来的困难,讨论了避免直接应用横截条件的非线性规划方法。并利用伴随变量与控制变量的转换关系,用控制变量的初始值来代替伴随变量的初始值,使得迭代初值具有物理意义而容易选取。应用这一思想给出了计算实例。
This paper is concerned with analysis and study of minimum fuel coplanar transfer with finite thrust by applying Pontryagin maximum principle. The solution conditions for optimal trajectories and optimal controls are concerned. In order to reduce some difficulties involved in solving a two -point boundary value problem via adjoint variables, we discuss a non-linear programming method in which the direct use of transversality conditions is avoided. In this method according to the 'adjoint-control' transformations the initial value of control variables is instead of the initiial value of adjoint variables. It makes the initial iterative variable more practical and easy to be determined.
出处
《宇航学报》
EI
CAS
CSCD
北大核心
1992年第3期24-31,共8页
Journal of Astronautics
关键词
轨道转移
有限推力转移
极大值原理
Orbit transfer, Transfer with finite thrust, Principle of maxiumum.