期刊文献+

基于免疫聚类和遗传算法的RBF网络设计方法 被引量:9

A RBF Designing Method Based on Immune Clustering and Genetic Algorithm
下载PDF
导出
摘要 基于人工免疫机制和遗传算法,提出了一种训练径向基函数(RBF)网络的混合算法.该算法采用了一种可以实现数据聚类的人工免疫机制根据输入数据集合自适应地确定RBF网络隐层中心的数量和初始位置;采用遗传算法训练RBF网络,能够使优化过程趋于全局最优.将该方法用于多用户检测问题的实验结果表明,采用这种混合算法训练的RBF网络结构精简,具有很好的抗多址干扰的性能. Based on artificial immunology and genetic algorithm, a hybrid algorithm to design the RBF network is proposed. An artificial immune mechanism for data clustering is used to adaptively specify the amount and initial positions of the RBF centers according to input data set; then RBF network is then trained with genetic algorithm that makes the training process tend to global optima. The application of the algorithm in multiuser detection problems demonstrates that the RBF network trained with the algorithm is concise in structure and has good anti-MAI performance.
出处 《应用科学学报》 CAS CSCD 2004年第1期81-84,共4页 Journal of Applied Sciences
关键词 免疫聚类 遗传算法 RBF网络设计 径向基函数网络 多用户检测 artificial immune clustering genetic algorithm RBF network multiuser detection
  • 相关文献

参考文献6

  • 1[1]Mulgrew Bernard. Applying radial basis functions[J]. IEEE Signal Processing Magazine, 1996, 13(2): 50-65.
  • 2[2]De Castro L N, Von Zuben F J. An immunological approach to initialize centers of radial basis function neural networks[C]. Proceedings of V Brazilian Conference on Neural Networks, 2001. 79-84.
  • 3[3]Maniezzo V. Genetic evolution of the topology and weight distribution of neural networks[J]. IEEE Trans on Neural Networks, 1994, 5(1): 39-53.
  • 4[4]Moody J., Darken C. Fast learning in networks of locally-tuned processing units[J]. Neural Computation, 1989, (1): 281-294.
  • 5[5]Karayiannis N B, Mi G W. Growing radial basis neural networks: merging supervised and unsupervised learning with network growth techniques[J]. IEEE Trans on Neural Networks, 1997, 8(6): 1492-1506.
  • 6[6]Sergio Verdu. Multiuser Detection [M]. Cambridge, UK: Cambridge University Press, 1998.

同被引文献109

引证文献9

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部