期刊文献+

CuCl/菲咯啉/甲基咪唑催化甲醇/乙醇氧化羰化一步合成碳酸甲乙酯 被引量:8

Synthesis of Methyl Ethyl Carbonate through Oxidative Carbonylation of Methanol and Ethanol Catalyzed by CuCl/Phenanthroline/Methylimidazole
下载PDF
导出
摘要 研究了CuCl与含氮杂环化合物配体 1,10 菲咯啉 (phen)和N 甲基咪唑 (NMI)形成的配合物催化剂对甲醇 /乙醇氧化羰化一步合成碳酸甲乙酯 (MEC)反应的催化活性 .讨论了配体的配比、甲醇和乙醇的相对用量、温度及压力等因素对甲醇和乙醇的转化率及MEC产率的影响 .结果表明 ,CuCl/ phen/NMI原位配合物催化剂对氧化羰化一步合成MEC反应具有较高的催化活性 .配体 phen及NMI对反应产物的选择性有明显的调变作用 ,甲醇和乙醇的配比对产物分布有很大的影响 .在V(MeOH) /V(EtOH) =0 2 5 ,c(CuCl) =0 2 0mol/L ,n(CuCl) ∶n(NMI) ∶n(phen) =1∶1 2 5∶1 2 5 ,p =2 4 0MPa ,θ =12 0℃的条件下反应 2h ,甲醇的转化率为 4 4 3% ,乙醇的转化率为 2 2 3% ,MEC的产率为 10 4 % . The organic carbonates synthesized by oxidative carbonylation are all symmetrical up to now, and asymmetrical organic carbonates are synthesized through transesterification. An asymmetrical dialkyl carbonate, methyl ethyl carbonate (MEC), was synthesized through the oxidative carbonylation of methanol and ethanol catalyzed by CuCl coordinated with two kinds of organic N-donor ligands, 1,10-phenanthroline (phen) andN-methylimidazole (NMI). The effects of volume ratio of methanol to ethanol, molar ratio of phen to NMI, temperature and pressure on the conversion of methanol and ethanol, and the yield of MEC were investigated. The CuCl/phen/NMI catalyst has a higher activity in the oxidative carbonylation of methanol and ethanol to MEC. The ratio of phen to NMI has great effect on the yield of MEC and the selectivity for MEC. When the reaction was carried out under the conditions of n(CuCl)∶ n(phen)∶ n(NMI)=1∶1.25∶1.25, V(MeOH)/ V(EtOH)=0.25, p=2.4 MPa, θ=120 ℃ and t=2 h, the MeOH conversion, the EtOH conversion and the MEC yield were 44.3%, 22.3% and 10.4%, respectively.
出处 《催化学报》 SCIE EI CAS CSCD 北大核心 2004年第3期243-246,共4页
关键词 甲醇 乙醇 氧化羰化 碳酸甲乙酯 氯化亚铜 菲咯啉 甲基咪唑 配合物催化剂 Schiff碱 methanol, ethanol, oxidative carbonylation, methyl ethyl carbonate, cuprous chloride, phenanthroline, methylimidazole, complex catalyst, Schiff base
  • 相关文献

参考文献9

  • 1[1]Pacheco M A, Marshall C L. Energy Fuels, 1997, 11(1): 2
  • 2[2]Shaikh A G, Sivaram S. Chem Rev, 1996, 96(3): 951
  • 3[4]Dunn B C, Guenneau C, Hilton S A, Pahnke J, Eyring E M, Dworzanski J, Meuzelaar H L C, Hu J Z, Solum M S, Pugmire R J. Energy Fuels, 2002, 16(1): 177
  • 4[5]Ishii H, Takeuchi K, Asai M, Ueda M. Catal Commun, 2001, 2(3/4): 145
  • 5[6]Parrish J P, Salvatore R N, Jung K W. Tetrahedron, 2000, 56(42): 8207
  • 6[10]Raab V, Merz M, Sundermeyer J. J Mol Catal A, 2001, 175(1/2): 51
  • 7[11]McMillin D R, McNett K M. Chem Rev, 1998, 98(3): 1201
  • 8[12]Morehouse S M, Suliman H, Haff J, Nguyen D. Inorg Chim Acta, 2000, 297(1/2): 411
  • 9[13]Wang S T, Li Y G, Wang E B, Luan G Y, Hu C W, Hu N H, Jia H Q. J Solid State Chem, 2002, 167(2): 402

同被引文献83

引证文献8

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部