期刊文献+

高斯扩散特性图象的盲解卷积 被引量:5

Blind Deconvolution of Gaussian Blurred Images
下载PDF
导出
摘要 图象的盲解卷积恢复具有重要的理论和实际意义,许多情况下系统的扩散特性不能精确获得。针对一类相对平滑或类似高斯分布的扩散特性,建立一种图象盲解卷积算法,采用交替迭代方法,适合总体最小二乘求解。算法能有效地确定点扩散函数,图象恢复质量有明显改善。最后的仿真实验表明了算法的有效性和稳定性。 In many image restoration applications, the point spread function(PSF) is not known exactly. We establish a blind deconvolution algorithm for images, where the PSF is smooth or similar to that of Gaussian blur. Using alternative iterative steps to solve the minimization problem, our algorithm is suitable for the total least square (TLS) method. This algorithm is efficient because different PSFs can be identified at the same SNR without changing parameters. Final experiments are presented to demonstrate the effectiveness and robustness of the algorithm.
作者 钟山 沈振康
出处 《计算机工程与科学》 CSCD 2004年第4期42-44,94,共4页 Computer Engineering & Science
关键词 图象恢复 扩散函数 高斯扩散特性 计算机 图象盲解卷积算法 交替迭代方法 blind deconvolution TLS Gaussian algorithm image
  • 相关文献

参考文献5

  • 1[1]R G Lane,R H T Bates. Automatic Multidimensional Deconvolution[J]. Journal of the Optical Society, 1987, 4(1):180-188.
  • 2[2]L Rudin, S Osher, E Fatemi. Nonlinear Total Variation Based Noise RemovalAlgorithms[J]. Physica D, 1992, 60(2):259-268.
  • 3[3]F C Jeng, J W Woods. Compound Gauss-Markov Models for Image Processing[A]. A K Katsaggelos ed. Digital Image Restoration[M]. Berlin:Springer-Verlag, 1991.
  • 4[4]G H Golub, C F van Loan. An Analysis of the Total Least Squares Problem[J]. SIAM Journal Numerical Analysis, 1980,17(6):883-893.
  • 5[5]V Z Mesarovic, N P Galatsanos, A K Katsaggelos. Regularized Constrained Total Least Squares Image Restoration[J]. IEEE Trans Image Processing,1995,4(8):1096-1108.

同被引文献26

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部