期刊文献+

权衡电能损失和启停成本的水电站机组最佳运行计划 被引量:4

Optimized Operation Plan of the Hydroelectric Plant Based on Reducing the Start-up/Shut-down Costs and the Total Power Generation Loss
下载PDF
导出
摘要 以水电站经济损失最小化为优化目标 ,提出了一个综合考虑电能损失与启停成本的机组最佳运行计划模型 ,使降低发电损失和减少开机次数这两个存在矛盾的问题得到兼顾 ,应用简单遗传算法进行优化 ,即可迅速得出一日内 96个时段机组最经济的运行方式。该模型强调机组启停和水轮机效率之间的协调 ,考虑了尾水位、压力钢管水头损失和水轮发电机组效率的变化 ,能够快速制定出平稳的开停机计划 ,获得各机组最优的负荷分配结果 ,对竞价上网环境下水电厂的运行管理有一定的实际意义。 After analyze the start-up/shut-down costs and the total power generation loss of the hydroelectric plant, author proposed the model whose objection was the minimal total economic losses. It compromises the contradiction about the loss and the numbers of start-up/shut-down. It optimizes the number of generating units at 96 periods in the day based on genetic algorithm. Therefore, we can attain the total generation scheduling of the plant in the most economic way. The model highlighted the tradeoff between start-up and shut-down of generating units and hydro power efficiency, and took into account variations in tailrace elevation, penstock head losses and turbine-generator efficiencies. As a result, the stationary plan can assist the hydroelectric plant on electricity power bidding.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 2004年第2期29-32,共4页 Journal of Sichuan University (Engineering Science Edition)
关键词 电能损失 启停成本 运行计划 Economics Mathematical models
  • 相关文献

参考文献3

二级参考文献12

  • 1周双喜,杨彬.实现无功优化的新算法──遗传算法[J].电力系统自动化,1995,19(11):19-23. 被引量:54
  • 2米凯利维茨Z.演化程序--遗传算法与数据编码的结合[M].北京:科学出版社,2000..
  • 3[1]Himmelblau, D.M. Applied Nonlinear Programming. New York: McGraw-Hill, Inc., 1972.
  • 4[2]Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning. Readings, MA: Addison-Wesley Publishing Company, 1989.
  • 5[3]Michalewicz, Z., Schoenauer, M. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation Journal, 1996,4(1):1~32.
  • 6[4]Powell, D., Skolnick, M. Using genetic algorithms in engineering design optimization with nonlinear constraints. In: Forest, S., ed. Proceedings of the 5th International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1993. 424~430.
  • 7[5]Deb, K., Agrawal, S. A niched-penalty approach for constraint handling in genetic algorithms. In: Montana, D., ed. Proceedings of the ICANNGA-99. Portoroz, Slovenia, 1999. 234~239.
  • 8[6]Schoenauer, M., Michalewicz, Z. Boundary operators for constrained optimization problems. In: Baeck, T., ed. Proceedings of the 7th International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1997. 322~329.
  • 9[7]Michalewicz, Z., Nazhiyath, G., Michalewicz, M. A note on usefulness of geometrical crossover for numerical optimization problems. In: Angeline, P., Baeck, T., eds. Proceedings of the 5th Annual Conference on Evolutionary Programming. Cambridge, MA: MIT Press, 1996. 325~331.
  • 10[8]Michalewicz, Z. Genetic Algorithms+Data Structures=Evolution Programs. 3rd ed., New York: Springer\|Verlag, 1996.

共引文献120

同被引文献78

引证文献4

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部