摘要
用Sarma和Zacharia[1] 所提出的延性单晶本构模型的积分算法和Taylor多晶模型假设研究了时间步长和硬化模型的选取对多晶集合体的应力应变响应和织构演化的影响。该算法是利用变形梯度乘法分解获得弹性变形梯度演化方程 ,用增量迭代法积分该方程 ,显式更新各滑移上的临界分切剪应力。算例的结果表明该算法具有时间步大 ,计算效率高的特点 ,另外 。
An algorithm for integration the constitutive equation for ductile single crystals is described,which is presented by Sarma and Zacharia [1]. Several polycrystalline examples are presented to demonstrate the effect of different time increments and hardening laws on the texture and stress-strain response of aggregate resulting from some simple deformation. Single crystal kinematics based on a multiplicative decomposition of the deformation gradient is used to obtain an evolution equation for the crystal elastic deformation gradient. The primary advantage of the algorithm is that it provides an implicit integration of elastic deformation gradient. This permits taking large time steps while maintaining accuracy and stability. The effect of hardening law on mechanics behavior of aggregate is examined using two different hardness. There is difference in the stress-strain response of aggregate simulated using different hardness, but the textures predicted using different hardness are very similar.
出处
《应用力学学报》
CAS
CSCD
北大核心
2004年第1期96-100,共5页
Chinese Journal of Applied Mechanics
基金
国家自然科学基金 ( 5 0 3 710 70 )
航空科学基金 ( 0 1C5 3 0 15 )
西北工业大学博士论文创新基金资助