期刊文献+

复杂系统可靠度置信区间估计 被引量:3

Estimation Reliability Confidence-intervals for Complex-systems
下载PDF
导出
摘要 针对复杂系统可靠性试验非常少甚至没有做的情况 ,提出了基于单元信息进行可靠性综合的方法。该方法不需假设系统或单元产品的寿命服从某一分布 ,减少了因寿命分布选择不当所造成的可靠性和方差的误差。在获得单元可靠性的均值和方差的基础上 ,利用系统可以分解为单一的串联或并联关系 ,通过逐步综合获得复杂系统的可靠性均值和方差估计值。利用系统信息熵原理 ,将部件的试验数据折合为系统的试验数据 ,获得系统的子样数。由此提出了小子样下的系统可靠性置信区间估计新方法 ,该方法只假设系统可靠性估计服从正态或对数正态分布。新方法使用限制少 ,计算简单 。 Reliability comprehensive methods based on components information are presented when there is no complex system reliability information.The methods do not necessary to assume the components time-to-failure distribution.Thus,error of reliability and variance decreases.Complex systems reliability mean and variance can be acquired based on components reliability information,at the same time,the only restriction is that it must be possible to decompose the system into series or parallel elements. The test data of components are converted into the test data of the complex system based on the information enthropy theory. Suppose the system reliability estimation follows normal or log-normal distribution,the system reliability confidence intervals can be evaluated according to samples.The application of this approach to small sample complex system will result in few restrictions and easily to conpate.
作者 李超 王金诺
出处 《机械设计与研究》 CSCD 2004年第2期13-16,共4页 Machine Design And Research
关键词 复杂系统 系统可靠性 置信区间 小子样 可靠性估计 可靠度 complex system system reliability confidence intervals small samples reliability estimation
  • 相关文献

参考文献13

  • 1[1]Buelhler R J.Confidence interval estimation of the product of two binomial parameters[J].JASA,1957,52:482~493.
  • 2[2]Johnson J R.Confidence interval estimation of the reliability of multi-component systems using component test data[D].Thesis,Univversity of Delaware,1969.
  • 3[3]Soms A P.Lindstrom-Madden method for series system with repeated components[R].AD/A146265,1984.
  • 4[4]Easterling R G.Approximate confidence limits for system reliability[J].JASA,1972,67:220~222.
  • 5[5]Mann N R.Approximetely optimum confidence bounds on series and parallel system reliability for system with binomial subsystem data[J].IEEE trans.Reliability,1974,23(5) :295~304.
  • 6[6]Stephenson A R,J G Mardo PVZ.Cole and G.Seibel.A tri-service Bayesian approach to a nuclear weapons reliability assessment[R].1972,AD746260.
  • 7[7]Winterbottom A.Lower confidence limits for series system reliability from binomial subsystem data[J].J.Amer.Statistical Assoc.,1974,69:782~788.
  • 8[8]Winterbottom A.Approximating posterior distribution of system reliability derived from component test data [R].1984,ADA152057
  • 9[9]Abdel-Wahid,A.R.& Winterbottom,A.,The approximation of system reliability posterior ditribution[J].Journal of Statistical planning and inference,1987,16:267~275.
  • 10[10]H F Martz,R A Waller.Bayesian reliability analysis [M].New York:John Wiley & Sons,1982.

同被引文献30

  • 1钱峰,田蔚风,金志华,樊春玲.惯性器件长期贮存性能可靠性灰色马氏链预测[J].上海交通大学学报,2004,38(10):1761-1763. 被引量:8
  • 2Ellishakoff I. Essay on Uncertainties in Elastic and Viscoelastic Structures:from AMF Reudenthal's Criticisms to Modern Convex Modeling. Computers & Structures, 1995, 56(6): 871~895
  • 3Ben-Haim Y. Convex Models of Uncertainty in Radial Pulse Buckling of Shells. Journal of Applied Mechanics, 1993, 60(3):683~686
  • 4Elishakoff I, Elisseeff P. Non-probabilistic Convex-theoretic Modeling of Scatter in Material Properties. AIAA Joural, 1994, 32: 843~849
  • 5Ben-Haim Y. A Non-probabilistic Concept of Reliability. Structural Safety, 1994, 14(4): 227~245
  • 6Elishakoff I. Discussion on A Non-probabilistic Concept of Reliability. Structural Safety, 1995, 17(3): 195~199
  • 7Ben-Haim Y. A Non-probabilistic Measure of Reliability of Linear Systems Based on Expansion of Convex Models. Structural Safety, 1995, 17(2): 91~109
  • 8龚怀云.应用泛函分析[M].西安:西安交通大学出版社,1998..
  • 9梅启智 廖炯生 孙惠中.系统可靠性工程基础[M].北京:科学出版社,1992..
  • 10李庆扬 莫孜中 祁立群.非线性方程组的数值解法[M].北京:科学出版社,1999..

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部