摘要
利用椭圆曲线离散对数问题的难解性,给出了一个基于拉格朗日插值的(t,n)门限秘密共享方案.本方案可使每个参与者对自己的子秘密及其他成员出示的子秘密进行验证,而不泄露子秘密信息,有效地阻止了外部攻击者对子秘密的窃取及内部参与者之间的互相欺诈.文中还给出了一个本方案的小数据实例,最后是本方案的安全性分析.
By means of the intractability of Ellipse Curve Discrete Logarithm Problem (ECDLP), a (t, n) secret sharing threshold scheme based on Lagrange insert value is presented. Every participant is able to verify the share that he receives and those other participants show, but the secret share isn't given away. This scheme can prevent adversaries from getting the shares and the participants cheating each other efficiently. The problem of renew shared secret, dynamic sub-secret allocation are properly treated in this scheme. An example of the scheme using the small number is given. The security of the scheme is analyzed in the final.
出处
《北京邮电大学学报》
EI
CAS
CSCD
北大核心
2004年第2期24-28,共5页
Journal of Beijing University of Posts and Telecommunications
基金
国家自然科学基金资助项目(90204017
60372094)
国家"973计划"资助项目(G1999035804)