摘要
本文通过适当地选取LQ性能指标函数中的加权矩阵R,给出了该二次型性能指标函数中的另一个加权矩阵Q与系统的开环特征多项式、闭环特征多项式的系数以及系数的系数矩阵A、B之间的对应关系。如果给定一个系统以及该系统的一组最优闭环极点,就可以求得矩阵Q。同时,用本文的研究结果,还可以直接确定系统的最优状态反馈系数矩阵。
In this paper, the relation between the weighting matrix Q in a linear quadratic performance index and the coefficients of the closed-loop charac-teristic polynomial, Open-loop characteristic polynomial and the coefficients matrices A,B of a system is developed via appropriately choosing the other weighting matrix R in the LQ performance index. With the result, Q can readily be determined if an open-loop system and its desired Optimal closed-loop eigenvalues are given. Besides, the Optimal stale feedback gain matrix for the system under study is also given through using -the proposed results.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
1989年第4期9-18,共10页
Control Theory & Applications
关键词
最优控制
加权矩阵
LQ逆问题
Optimal control
Wcightimg matrices
LQ inverse problem
Eigenvalues
Characteristic polynomials.