摘要
研究真空态与粒子数态|n〉叠加态的熵压缩性质,并比较熵压缩与方差压缩的关系.研究表明:当n=1,2时叠加态具有压缩性,并且熵压缩比方差压缩更灵敏;当n≥3时,随着n的逐渐增大,叠加态变得不压缩.
The entropic squeezing for the superposition state of the vacuum and the Fock state |n> is studied, and compared with the quadrature squeezing. The results show that: when the variance n=1,2, the superposition state is squeezing, and the entropic squeezing is more sensitive than quadrature squeezing for the squeezing effect of the field ; when n≥3, with the increasing of variance n, it isn't squeezing.
出处
《福建师范大学学报(自然科学版)》
CAS
CSCD
2004年第1期45-49,共5页
Journal of Fujian Normal University:Natural Science Edition
基金
福建省自然科学基金资助项目(A0210014)
福建省教育厅基金资助项目(JA02168)
关键词
真空态
粒子数态
叠加态
熵压缩
位置熵
动量熵
方差压缩
量子光学
光场压缩效应
the superposition state
the entropy of position
the entropy of momentum
the entropic squeezing
the quadrature squeezing