期刊文献+

资产方程扩散系数的小波估计 被引量:1

Wavelet Estimation of the Diffusion Coefficients in Assents Equations
下载PDF
导出
摘要 讨论了资产方程扩散系数的估计问题,给出了当系数σ(.)为资产过程状态Xt的非线性函数,样本数据为X0,X1,…,Xn-1时,对应的非线性小波估计量,并证明了所得估计量的均方收敛性。 The problem of wavelet estimation of the assets equation's coefficients is discussed. When the assets equation's coefficients σ(.) are nonlinear functions of x and X_0,X_1,…,X_(n-1) are the samples of assets process {X_1,t∈[0,T]},A wavelet estimation of σ(.) is constructed. And the mean square consistency of the estimate is proved.
作者 陈萍 杨孝平
出处 《工程数学学报》 CSCD 北大核心 2004年第2期212-216,共5页 Chinese Journal of Engineering Mathematics
关键词 资产方程 扩散系数 小波估计 均方收敛性 assets equation diffusion coefficient wavelet estimation mean square consistency
  • 相关文献

参考文献11

  • 1肖庆宪,郑祖康.股票价格过程方差函数的统计推断[J].应用概率统计,2000,16(2):182-190. 被引量:7
  • 2张双林,沙秋英,程美玉.回归函数非线性小波估计的一致强相合性[J].应用概率统计,1999,15(4):375-380. 被引量:4
  • 3Garman M, Klass M J. On the estimation of security price volatilities from historical data[J]. J Business,1980;53:67 - 78
  • 4Thomas S K, Bernhard M, Mihali Z. Valuation of investments in real assets with implications for the stock prices[J]. SIAM J Control Optim,1999;38(6) :2082 - 2102
  • 5Donoho D L, Johnstone I M. Minimax estimation via wavelet shrinkage[J]. Ann Statist, 1998:26(3):879 - 921
  • 6Bernt K. Stochastic differential equations [M]. An introduction with applications, Fourth edition,Springer-Verlag, 1995
  • 7Kerkyacharian G,Picard D. Density estimation in besov space[J]. Stat Prob Lett,1992;13:15 -24
  • 8Delyon B,Juditsky A. On minamix wavelet estimatiors[J]. Appl Comput Harmonic Analysis, 1996;3:215- 228
  • 9Hall P,Heyde C. Martingale limit theory and its applicatiom[M]. 1980, Academic Press. Inc
  • 10Karatzas I. Brownian motion and stochastic calculus[M]. 1987, Springer-Verlag.

二级参考文献7

共引文献10

同被引文献12

  • 1Fouque, J.P., Papanicolaou, G., Sipcar, K.R., Derivatives in Financial Markets with Stochastic Volatility, Cambridge University, 2000.
  • 2Karlin, S. and Taylor, H.M., A Second Course in Stochastic Processes, Academic Press, 1981.
  • 3~rong, E. and Hajek, B., Stochastic Processes in Engineering Systems, Springer-Verlag, New York,1985.
  • 4Robinson, P.M., Noparametric estimation for time series models, J. Time Series Anal., 4(1983),185-208.
  • 5Karatzas, I. and Steven, E.S., Brownian Motion and Stochastic Calculus, Springer-Verlag, 1988.
  • 6Dacunha-Castelle, D. and Florens-Zmirou, D., Estimation of the coefficients of a diffusion from discrete observations, Stochastics, 19(1986), 263-284.
  • 7Liptser, R.S. and Shiryayey, A.N., Statistic of Random Processes, I, II, New York: Springer-Verlag,1997.
  • 8Kutoyants, Yu.A., Parameter Estimation for Stochastic Process, Heldermann-Verlag, Berlin, 1984.
  • 9Florens-Zmirou, D., Approximate discrete-time schemes for statistics of diffusion processes, Statistics,20(1989), 547-557.
  • 10Cox, J.C., Ingersoll, J.E., Jr. and Ross, S.A., An intertemporal general equilibrium model of asset prices, Econometrica, 53(2)(1985), 363-384.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部