期刊文献+

一种基于支持向量机的内模控制方法 被引量:12

Internal model control approach based on support vector machines
下载PDF
导出
摘要 在基于数据的基础上,采用SVM回归理论建立系统的正向模型和设计逆模控制器.首先简要介绍了SVMR的原理,然后将其应用于内模控制问题,并建立了SVMR模型.其次,在控制过程可逆的条件下设计了SVMR控制器.最后将该控制方法应用于一可逆非线性系统和具未知干扰的温室环境控制问题,仿真结果表明该方法与神经网络IMC相比,具有较简单的模型和较好的控制性能. The system process was modeled and an inverse model controller using support vector machine regression (SVMR) was designed. First, the SVMR principle was briefly introduced. Second, the SVMR was applied to the internal model control (IMC) problem, and the SVMR internal model was developed. Third, an SVMR controller for internal model control problem was proposed under the inverse condition of control process. Finally, the control algorithm was applied to the reversible nonlinear system and greenhouse environment with unknown disturbance, and compared with neural networks IMC using simulation, and the results showed that the SVMR IMC has a simplified model and good control performance.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2004年第1期85-88,共4页 Control Theory & Applications
关键词 内模控制 支持向量机 神经网络 鲁棒性 稳定性 support vector machines (SVM) SVMR IMC non-linear
  • 相关文献

参考文献8

  • 1[1]HU Q, SAHA P, RANGAIAH G P. Experimental evaluation of an augmented IMC for non-linear sytems [J]. Control Engineering Practice, 2000,8(10):1167-1176.
  • 2[2]HU Q, RANGAIAH G P. Adaptive internal model control of non-linear process [J]. Chemical Engineering Science, 1999,54(9): 1205-1220.
  • 3[3]MLLER K R, SMOLA A J, RTSCH G, et al. Predicting time series with support vector machines [C]∥GERSTNER W, GERMOND A, HASLER M, et al. Proc of Int Conf on Artificial Neural Networks'97, Springer Lecture Notes in Computer Science. New York::Springer, 1997:999-1004.
  • 4[4]VAPNIK V. The Nature of Statistical Learning Theory [M]. New York: Springer, 1999.
  • 5[5]BOSER B E, GUYON I M, VAPNIK V N. A training algorithm for optimal margin classifiers [C]∥HAUSSLER D. Proc of the 5th Annual Association for Computing Machinery Workshop on Computional Learning Theory. Pittsburgh, PA:ACM Press,1992:144-152.
  • 6[6]OSUNA E, FREUND R, GIROSI F. An improved training algorithm for support vector machines [C]∥Proc of IEEE Neural Networks for Signal Processing. Los Alamitons, CA: IEEE Press,1997:276-285.
  • 7[7]HUNT K J, SBARBARO D. Neural networks for non-linear internal model control [J]. IEE Proc-D, 1991,138(5):431-438.
  • 8[8]ALBERT S, LOUIS D A, RICHARD M P. Application of pseudoderivative-feedback algorithm in greenhouse air temperature control [J]. Computer and Electronics in Agriculture, 2000, 26(3):283-302.

同被引文献164

引证文献12

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部