期刊文献+

理想导体金属谐振腔电磁场微扰理论研究 被引量:8

A New Perturbation Theory of Electromagnetic Fields in Metal Cavity
下载PDF
导出
摘要 根据电磁场Helmholtz方程与定态薛定谔方程的相似性 ,给出了金属谐振腔电磁场的微扰理论 :在金属腔中放入一介质体时 ,原来空腔中电磁场的分布和谐振频率会发生改变。发生改变后的电磁场可以用原来所有模式电磁场展开。若引入的介质体很小或相对介电常数和磁导率接近于 1,就可把它看成微扰。导出了谐振频率和电磁场分布的一级、二级近似解析表达式。指出了此理论的适用范围 ,并对结果进行了讨论。 A perturbation theory of electromagnetic fields in metal cavity has been presented according to the similarity of Helmholtz equation and schrdinger equation. When a dielectric is introduced in metal cavity, the electromagnetic fields and oscillating frequency may be changed. The changed fields can be expanded as the fields of all mold in the original empty metal cavity. If the dielectric is small enough or its permittivity and permeability are approximate equal to one, it can be taken as perturbation. In this paper, we have derived the first order and second order approximate expressions of the fields and the frequency. The situations the theory applied to is indicated, and the results have been discussed also.
出处 《微波学报》 CSCD 北大核心 2004年第1期26-29,44,共5页 Journal of Microwaves
基金 浙江省自然科学基金项目 (编号 :M 6 0 30 33)
关键词 电磁场 金属谐振腔 微扰理论 介电性能测量 微波材料 Perturbation theory, Metal cavity, Electromagnetic fields, Dielectric measurement, Microwave materials
  • 相关文献

参考文献10

  • 1[1]Hakki B W, Coleman P D. A dielectric resonator method of measuring inductive capacities in the millimeter ranger. IRE Trans. Microwave Theory Tech. , 1960, 402 ~410
  • 2[2]Clarke R N, Rosenberg C B. Fabry-perot and open resonators at microwave and millimeter wave frequencies 2-300GHz. J. Phys. E: Sci. Instrum. , 1982, 15: 9 ~ 24
  • 3[3]E H Ni (倪尔瑚), Y Q Ni. Extra-cavity perturbation method for the measurement of dielectric resonator materials. Rev. Sci. Instrum. , 1997, 68: 2524 ~ 2528
  • 4[4]Stockhausen M, Kessler M. Concerning measurements of high complex permittivity by the resonator perturbation method. J. Phys. E: Sci. Instrum. , 1980, 13:732 ~736
  • 5[5]Andrzej W Kraszewski, Stuart O Nelson. Observations on resonant cavity perturbation by dielectric objects. IEEE Transactions on Microwave Theory and Techniques,1992, 40(1): 151 ~ 155
  • 6[6]Richard G Carter. Accuracy of microwave cavity perturbation measurements. IEEE Transactions on Microwave Theory and Techniques, 2001,49( 1 ): 80 ~ 85
  • 7[7]Jerzy Krupka, Krzysztof Derzakowski, Bill Riddle, et al.A dielectric resonator for measurements of complex permittivity of low loss dielectric materials as a function of temperature. Meas. Sci. Technol., 1998,9:1751 ~1756
  • 8[8]Jerzy Krukpa. Resonant modes in shielded cylindrical ferrite and single - crystal dielectric resonators. IEEE Transactions on Microwave Theory and Techniques,1989, 37(4): 691 ~697
  • 9[9]Shouyuan Shi, Liuqing Yang, Dennis W Prather, Numerical study of axisymmetric dielectric resonators. IEEE Transactions on Microwave Theory and Techniques,2001, 49(9): 1614 ~ 1619
  • 10[10]Darko Kajfez, Siva Chebolu, Ahmed A Kishk, et al.Temperature dependence of composite microwave cavities. IEEE Transactions on Microwave Theory and Techniques, 2001,49(1): 80~85

同被引文献45

引证文献8

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部