期刊文献+

全结构遗传优化径向基概率神经网络 被引量:4

RADIAL BASIS PROBABILISTIC NEURAL NETWORKS OF GENETIC OPTIMIZATION OF FULL STRUCTURE
下载PDF
导出
摘要 使用遗传算法来实现径向基概率神经网络 (RBPNN)的全结构遗传优化 ,包括优选网络第一隐层节点数和求取匹配的核函数控制参数 .提出了适用于RBPNN的染色体编码方式 ,不仅使得所选隐中心矢量充分体现了模式样本的空间分布特征 ,同时还能够获得隐中心矢量的最佳数目及匹配的核函数控制参数 .新构造的适应度函数能够有效地控制网络输出的误差精度 .实验结果表明 ,该算法有效地简化了RBPNN模型的结构 . The genetic algorithm was used to optimize the full structure radial basis probabilistic neural networks(RBPNN), including selecting the hidden centers vectors of the first hidden layer and determining the matching controlling parameters of kernel function of RBPNN. The proposed genetic encoding method not only completely embodies the space distribution characterizes of pattern samples, but also simultaneously achieves the optimum number of the selected hidden centers vectors and the matching controlling parameters of the kernel function. The novelly constructed fitting function can efficiently control the error accuracy of the RBPNN output. The experimental results show that the algorithm effectivelfies simpliy the structure of PBPNN.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2004年第2期113-118,共6页 Journal of Infrared and Millimeter Waves
基金 国家自然科学基金资助项目 (60 173 0 5 0 )
关键词 径向基概率神经网络 遗传算法 全结构优化 隐中心矢量 染色体编码方式 核函数控制参数 radial basis probabilistic neural networks genetic algorithms full structure optimization hidden centers vectors
  • 相关文献

参考文献6

  • 1Huang D S. Radial basis probabilistic neural networks:Model and application [J]. International Journal of Pattern Recognition and Artificial Intelligence, 1999, 13 ( 7 ):1083-1101
  • 2Lowe D. Adaptive radial basis function nonlinearities and the problem of generalization[A]. London: In proceeding of First International Conference on Artifcial Neural Networks,1989, 171-175
  • 3Specht D E. Probabilistic neural networks [J]. Neural Networks, 1990, 109-118
  • 4Zhou Z H, Chen S F, Chen Z Q. A Fast Adaptive Neural Network Classifier[ J]. FANNC: Knowledge and Information Systems, 2000, 115-129
  • 5Zhao W B, Huang D S. The structure optimization of radial basis probabilistic neural networks based on genetic algorithms [ A ]. Hawaii: In proceeding of International Joint conference on Neural Networks 2002, 1086-1091
  • 6Fisher R A. The use of multiple measurements in taxonomic problems[J]. Annals of Eugenics, 1936,7:179-188

同被引文献47

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部