期刊文献+

代数次数为2的Bent函数的性质及其应用 被引量:3

The Characteristic of Quadratic Bent Functions and Its Applications
下载PDF
导出
摘要 本文证明了任意代数次数为2的n元Bent函数都与形式为x1x2+x3x4+…+xn-1xn的Bent函数线性等价;给出了以任意已知代数次数为2的n元Bent函数为分量的多维Bent函数的构造法;利用本文所给的方法,对任一主对角线上元素全为0的n阶可逆对称矩阵M1,都可以构造造k-1个主对角线上元素全为0的n阶可逆对称矩阵M2…,Mk,使得M1,M2…,Mk的任意非零线性组合仍是主对角线上元素全为0的阶可逆对称矩阵. This paper gives a proof that all Bent functions of degree 2 are linearly equivalent each other and presents a method for constructing multi-dimension Bent functions when one output variable is of degree 2. For a given reversible symmetrical matrix with the elements of its diagonal is 0, it provides a method for constructing k - 1' s reversible symmetrical matrixes,such that every non-zero linear combination of these k's matrixes is also a reversible symmetrical matrix.
出处 《电子学报》 EI CAS CSCD 北大核心 2004年第4期654-656,共3页 Acta Electronica Sinica
关键词 BENT函数 多维Bent函数 Bent互补函数族 线性等价 可逆对称矩阵 Bent function multi-dimension Bent function The families of Bent complementary functions linear equivalent reversible symmetrical matrix
  • 相关文献

参考文献5

  • 1Rothaus O S.On Bent functions [J].J Combinatorial Theory (Ser A),1976,20:300-305.
  • 2Yuliang Zheng,Josef Pieprzyk,Jennifer Seberry.HAVAL-A One Way Hashing Algorithm with Variable Length Output [A].Advances in Crytology-AUSCRYPT'92 [C].Heidelberg,Springer-Verlag,1993.83-104.
  • 3Kaisa Nyberg.Perfect nonlinear S-boxes [A].Advances in Crytology-Eurocrypt'91 [C].Heidelberg,Springer-Verlag,1992.378-383.
  • 4许成谦,杨义先,胡正名.Bent互补函数族的性质和构造方法[J].电子学报,1997,25(10):52-56. 被引量:12
  • 5丁石孙.线性移位寄存器序列[M].上海:上海科技出版社,1980.10-24.

二级参考文献6

共引文献11

同被引文献16

  • 1WENG GuoBiao,FENG RongQuan,QIU WeiSheng,ZHENG ZhiMing.The ranks of Maiorana-McFarland bent functions[J].Science China Mathematics,2008,51(9):1726-1731. 被引量:1
  • 2常祖领,陈鲁生,符方伟.PS类Bent函数的一种构造方法[J].电子学报,2004,32(10):1649-1653. 被引量:7
  • 3孟庆树,张焕国,王张宜,覃中平,彭文灵.Bent函数的演化设计[J].电子学报,2004,32(11):1901-1903. 被引量:16
  • 4李世取 等.密码学中的逻辑函数[M].郑州: 信息工程大学出版社,2000..
  • 5Rothaus, O.S., On bent functions. J Combinatorial Theory (Ser. A), 1976, 20: 300-305.
  • 6Kaisa Nyberg, Perfect nonlin S-boxes,Advances in in Cryptology EuroCrypt '91:378-386
  • 7A.Lempel and M.Cohn, Maximal families of bent sequences, IEEE Trans. Infoem. Theory, 1982), IT-28, 865-868.
  • 8B.Preneel et al, Propagation characteristics of Boolean bent functions,Proceeding of Eurocrypt' 90,Springer-Verlag 1991: 161-173.
  • 9Mcfarland, R. L., A family of noncyclic difference sets , Journal of Combinatorics Theory, Series A,1973, vol.15: 1-10.
  • 10Dillon, J.F., Elementary hadamard difference sets, Ph.D.Thesis, university of Maryland, 1974.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部